Skip to main content
Log in

Developmental Cerebellar Cognitive Affective Syndrome in Ex-preterm Survivors Following Cerebellar Injury

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Cerebellar injury is increasingly recognized as an important complication of very preterm birth. However, the neurodevelopmental consequences of early life cerebellar injury in prematurely born infants have not been well elucidated. We performed a literature search of studies published between 1997 and 2014 describing neurodevelopmental outcomes of preterm infants following direct cerebellar injury or indirect cerebellar injury/underdevelopment. Available data suggests that both direct and indirect mechanisms of cerebellar injury appear to stunt cerebellar growth and adversely affect neurodevelopment. This review also provides important insights into the highly integrated cerebral-cerebellar structural and functional correlates. Finally, this review highlights that early life impairment of cerebellar growth extends far beyond motor impairments and plays a critical, previously underrecognized role in the long-term cognitive, behavioral, and social deficits associated with brain injury among premature infants. These data point to a developmental form of the cerebellar cognitive affective syndrome previously described in adults. Longitudinal prospective studies using serial advanced magnetic resonance imaging techniques are needed to better delineate the full extent of the role of prematurity-related cerebellar injury and topography in the genesis of cognitive, social-behavioral dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol. 2009;24(9):1085–104.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Tam EWY, Chau V, Ferriero DM, Barkovich AJ, Poskitt KJ, Studholme C, et al. Preterm cerebellar growth impairment after postnatal exposure to glucocorticoids. Sci Transl Med. 2011;3(105):105ra.

    Article  Google Scholar 

  3. Chang CH, Chang FM, Yu CH, Ko HC, Chen HY. Assessment of fetal cerebellar volume using three-dimensional ultrasound. Ultrasound Med Biol. 2000;26(6):981–8.

    Article  CAS  PubMed  Google Scholar 

  4. Law M, MacDermid J. Evidence-based rehabilitation. 3rd ed. Thorofare: Slack Inc; 2013.

    Google Scholar 

  5. Limperopoulos C, Soul JS, Haidar H, Huppi PS, Bassan H, Warfield SK, et al. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics. 2005;116(4):844–50.

    Article  PubMed  Google Scholar 

  6. Limperopoulos C, Benson CB, Bassan H, Disalvo DN, Kinnamon DD, Moore M, et al. Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics. 2005;116(3):717–24.

    Article  PubMed  Google Scholar 

  7. Di Salvo DN. A new view of the neonatal brain: clinical utility of supplemental neurologic US imaging Windows. Radiographics. 2001;21(4):943–55.

    Article  PubMed  Google Scholar 

  8. Steggerda SJ, Leijser LM, Wiggers-de Bruïne FT, van der Grond J, Walther FJ, van Wezel-Meijler G. Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology. 2009;252(1):190–9.

    Article  PubMed  Google Scholar 

  9. Steggerda SJ, De Bruine FT, van den Berg-Huysmans AA, Rijken M, Leijser LM, Walther FJ, et al. Small cerebellar hemorrhage in preterm infants: perinatal and postnatal factors and outcome. Cerebellum. 2013;12(6):794–801.

    Article  PubMed  Google Scholar 

  10. Johnsen SD, Tarby TJ, Lewis KS, Bird R, Prenger E. Cerebellar infarction: an unrecognized complication of very low birthweight. J Child Neurol. 2002;17(5):320–4.

    Article  PubMed  Google Scholar 

  11. Mercuri E, He J, Curati WL, Dubowitz LM, Cowan FM, Bydder GM. Cerebellar infarction and atrophy in infants and children with a history of premature birth. Pediatr Radiol. 1997;27(2):139–43.

    Article  CAS  PubMed  Google Scholar 

  12. Rollin NK, Wen TS, Domingues R. Crossed cerebellar atrophy in children: a neurologic sequela of extreme prematurity. Pediatr Radiol. 1995;25 suppl 1:S20-5.

    Google Scholar 

  13. Shamoto H, Chugani HT. Glucose metabolism in the human cerebellum: an analysis of crossed cerebellar diaschisis in children with unilateral cerebral injury. J Child Neurol. 1997;12:407–14.

    Article  CAS  PubMed  Google Scholar 

  14. Cosentino-Rocha L, Klein VC, Linhares MB. Effects of preterm birth and gender on temperament and behavior in children. Infant Behav Dev. 2014;37(3):446–56.

    Article  PubMed  Google Scholar 

  15. Stoodley CJ, Stein JF. Cerebellar function in developmental dyslexia. Cerebellum. 2013;12(2):267–76.

    Article  PubMed  Google Scholar 

  16. Tam EW. Potential mechanisms of cerebellar hypoplasia in prematurity. Neuroradiology. 2013;55 Suppl 2:41–6.

    Article  PubMed  Google Scholar 

  17. de Kieviet JF, Zoetebier L, van Elburg RM, Vermeulen RJ, Oosterlaan J. Brain development of very preterm and very low-birthweight children in childhood and adolescence: a meta-analysis. Dev Med Child Neurol. 2012;54(4):313–23.

    Article  PubMed  Google Scholar 

  18. Reeber SL, Otis TS, Sillitoe RV. New roles for the cerebellum in health and disease. Front Syst Neurosci. 2013;7:83.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Limperopoulos C, Soul JS, Gauvreau K, Huppi PS, Warfield SK, Bassan H, et al. Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics. 2005;115(3):688–95.

    Article  PubMed  Google Scholar 

  20. Padilla N, Alexandrou G, Blennow M, Lagercrantz H, Aden U. Brain growth gains and losses in extremely preterm infants at term. Cereb Cortex (New York, NY: 1991). 2014. doi:10.1093/cercor/bht431.

  21. Poretti A, Boltshauser E, Doherty D. Cerebellar hypoplasia: differential diagnosis and diagnostic approach. Am J Med Genet C: Semin Med Genet. 2014;166C(2):211–26.

    Article  Google Scholar 

  22. Limperopoulos C, Bassan H, Gauvreau KK, Robertson RL, Sullivan NR, Benson CB, et al. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics. 2007;120(3):584–93.

    Article  PubMed  Google Scholar 

  23. Messerschmidt A, Fuiko R, Prayer D, Brugger P, Boltshauser E, Zoder G, et al. Disrupted cerebellar development in preterm infants is associated with impaired neurodevelopmental outcome. Eur J Pediatr. 2008;167(10):1141–7.

    Article  PubMed  Google Scholar 

  24. Bednarek N, Akhavi A, Pietrement C, Mesmin F, Loron G, Morville P. Outcome of cerebellar injury in very low birth-weight infants: 6 case reports. J Child Neurol. 2008;23(8):906–11.

    Article  PubMed  Google Scholar 

  25. Zayek M, Benjamin JT, Maertens P, Trimm RF, Lal CV, Eyal FG. Cerebellar hemorrhage: a major morbidity in extremely preterm infants. J Perinatol. 2012;32(9):699–704.

    Article  CAS  PubMed  Google Scholar 

  26. Limperopoulos C, Chilingaryan G, Sullivan N, Guizard N, Robertson RL, du Plessis AJ. Injury to the premature cerebellum: outcome is related to remote cortical development. Cereb Cortex. 2012;24(3):728–36.

    Article  PubMed  Google Scholar 

  27. van Kooij BJM, de Vries LS, Ball G, van Haastert IC, Benders MJNL, Groenendaal F, et al. Neonatal tract-based spatial statistics findings and outcome in preterm infants. Am J Neuroradiol. 2012;33(1):188–94.

    Article  PubMed  Google Scholar 

  28. Dyet LE, Kennea N, Counsell SJ, Maalouf EF, Ajayi-Obe M, Duggan PJ, et al. Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics. 2006;118(2):536–48.

    Article  PubMed  Google Scholar 

  29. Tam EW, Rosenbluth G, Rogers EE, Ferriero DM, Glidden D, Goldstein RB, et al. Cerebellar hemorrhage on magnetic resonance imaging in preterm newborns associated with abnormal neurologic outcome. J Pediatr. 2011;158(2):245–50.

    Article  PubMed Central  PubMed  Google Scholar 

  30. van Kooij BJ, Benders MJ, Anbeek P, van Haastert IC, de Vries LS, Groenendaal F. Cerebellar volume and proton magnetic resonance spectroscopy at term, and neurodevelopment at 2 years of age in preterm infants. Dev Med Child Neurol. 2012;54:260–6.

    Article  PubMed  Google Scholar 

  31. Zafeiriou DI, Ververi A, Anastasiou A, Soubasi V, Vargiami E. Pontocerebellar hypoplasia in extreme prematurity: clinical and neuroimaging findings. Pediatr Neurol. 2013;48(1):48–51.

    Article  PubMed  Google Scholar 

  32. Johnsen SD, Bodensteiner JB, Lotze TE. Frequency and nature of cerebellar injury in the extremely premature survivor with cerebral palsy. J Child Neurol. 2005;20(1):60–4.

    Article  PubMed  Google Scholar 

  33. Gadin E, Lobo M, Paul DA, Sem K, Steiner KV, Mackley A, et al. Volumetric MRI and MRS and early motor development of infants born preterm. Pediatr Phys Ther. 2012;24(1):38–44.

    Article  PubMed  Google Scholar 

  34. Lind A, Haataja L, Rautava L, Valiaho A, Lehtonen L, Lapinleimu H, et al. Relations between brain volumes, neuropsychological assessment and parental questionnaire in prematurely born children. Eur Child Adolesc Psychiatry. 2010;19(5):407–17.

    Article  PubMed  Google Scholar 

  35. Lind A, Parkkola R, Lehtonen L, Munck P, Maunu J, Lapinleimu H, et al. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children. Pediatr Radiol. 2011;41:953–61.

    Article  PubMed  Google Scholar 

  36. Northam GB, Liegeois F, Chong WK, Wyatt JS, Baldeweg T. Total brain white matter is a major determinant of IQ in adolescents born preterm. Ann Neurol. 2011;69(4):702–11.

    Article  PubMed  Google Scholar 

  37. Shah DK, Anderson PJ, Carlin JB, Pavlovic M, Howard K, Thompson DK, et al. Reduction in cerebellar volumes in preterm infants: relationship to white matter injury and neurodevelopment at two years of age. Pediatr Res. 2006;60(1):97–102.

    Article  PubMed  Google Scholar 

  38. Taylor HG, Filipek PA, Juranek J, Bangert B, Minich N, Hack M. Brain volumes in adolescents with very low birth weight: effects on brain structure and associations with neuropsychological outcomes. Dev Neuropsychol. 2011;36(1):96–117.

    Article  PubMed  Google Scholar 

  39. Nosarti C, Giouroukou E, Healy E, Rifkin L, Walshe M, Reichenberg A, et al. Grey and white matter distribution in very preterm adolescents mediates neurodevelopmental outcome. Brain. 2008;131(1):205–17.

    PubMed  Google Scholar 

  40. Spittle AJ, Doyle LW, Anderson PJ, Inder TE, Lee KJ, Boyd RN, et al. Reduced cerebellar diameter in very preterm infants with abnormal general movements. Early Hum Dev. 2010;86(1):1–5.

    Article  PubMed  Google Scholar 

  41. Martinussen M, Flanders DW, Fischl B, Busa E, Lohaugen GC, Skranes J, et al. Segmental brain volumes and cognitive and perceptual correlates in 15-year-old adolescents with low birth weight. J Pediatr. 2009;155(6):848–53. e1.

    Article  PubMed  Google Scholar 

  42. Parker J, Mitchell A, Kalpakidou A, Walshe M, Jung H-Y, Nosarti C, et al. Cerebellar growth and behavioural & neuropsychological outcome in preterm adolescents. Brain. 2008;131(5):1344–51.

    Article  PubMed  Google Scholar 

  43. Allin M, Matsumoto H, Santhouse AM, Nosarti C, AlAsady MHS, Stewart AL, et al. Cognitive and motor function and the size of the cerebellum in adolescent born very pre-term. Brain. 2001;124:60–6.

    Article  CAS  PubMed  Google Scholar 

  44. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123(5):1041–50.

    Article  PubMed  Google Scholar 

  45. Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123(Pt 5):1051–61.

    Article  PubMed  Google Scholar 

  46. O’Halloran CJ, Kinsella GJ, Storey E. The cerebellum and neuropsychological functioning: a critical review. J Clin Exp Neuropsychol. 2012;34(1):35–56.

    Article  PubMed  Google Scholar 

  47. Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2012;11(2):336–51.

    Article  PubMed  Google Scholar 

  48. Schmahmann JD, MacMore J, Vangel M. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience. 2009;162(3):852–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Limperopoulos C, Robertson RL, Sullivan NR, Bassan H, du Plessis AJ. Cerebellar injury in term infants: clinical characteristics, magnetic resonance imaging findings, and outcome. Pediatr Neurol. 2009;41(1):1–8.

    Article  PubMed  Google Scholar 

  50. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. NeuroImage. 2012;59(2):1560–70.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Aarnoudse-Moens CSH, Weisglas-Kuperus N, van Goudoever JB, Oosterlaan J. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics. 2009;124(2):717–28.

    Article  PubMed  Google Scholar 

  52. Bhutta AT, Cleves MA, Casey PH, Cradock MM, Anand KJ. Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA. 2002;288(6):728–37.

    Article  PubMed  Google Scholar 

  53. Bolduc ME, Du Plessis AJ, Sullivan N, Khwaja OS, Zhang X, Barnes K, et al. Spectrum of neurodevelopmental disabilities in children with cerebellar malformations. Dev Med Child Neurol. 2011;53(5):409–16.

    Article  PubMed  Google Scholar 

  54. Courchesne E. Abnormal early brain development in autism. Mol Psychiatry. 2002;7 Suppl 2:S21–3.

    Article  PubMed  Google Scholar 

  55. Schmahmann J, Weilburg J, Sherman J. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.

    Article  PubMed  Google Scholar 

  56. Becker EB, Stoodley CJ. Autism spectrum disorder and the cerebellum. Int Rev Neurobiol. 2013;113:1–34.

    Article  CAS  PubMed  Google Scholar 

  57. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.

    Article  PubMed  Google Scholar 

  58. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78.

    Article  PubMed  Google Scholar 

  59. Marien P, Verslegers L, Moens M, Dua G, Herregods P, Verhoeven J. Posterior fossa syndrome after cerebellar stroke. Cerebellum. 2013;12(5):686–91.

    Article  PubMed  Google Scholar 

  60. Levisohn PM. The autism-epilepsy connection. Epilepsia. 2007;48 Suppl 9:33–5.

    Article  PubMed  Google Scholar 

  61. Grill J, Viguier D, Kieffer V, Bulteau C, Sainte-Rose C, Hartmann O, et al. Critical risk factors for intellectual impairment in children with posterior fossa tumors: the role of cerebellar damage. J Neurosurg. 2004;101(2 Suppl):152–8.

    PubMed  Google Scholar 

  62. Turkel SB, Shu Chen L, Nelson MD, Hyder D, Gilles FH, Woodall L, et al. Case series: acute mood symptoms associated with posterior fossa lesions in children. J Neuropsychiatry Clin Neurosci. 2004;16(4):443–5.

    Article  PubMed  Google Scholar 

  63. Fernandez VG, Stuebing K, Juranek J, Fletcher JM. Volumetric analysis of regional variability in the cerebellum of children with dyslexia. Cerebellum. 2013;12(6):906–15.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Catsman-Berrevoets CE, Aarsen FK. The spectrum of neurobehavioural deficits in the Posterior Fossa Syndrome in children after cerebellar tumour surgery. Cortex. 2010;46(7):933–46.

    Article  PubMed  Google Scholar 

  65. Bolduc ME, Limperopoulos C. Neurodevelopmental outcomes in children with cerebellar malformations: a systematic review. Dev Med Child Neurol. 2009;51(4):256–67.

    Article  PubMed  Google Scholar 

  66. Poretti A, Dietrich Alber F, Brancati F, Dallapiccola B, Valente EM, Boltshauser E. Normal cognitive functions in Joubert Syndrome. Neuropediatrics. 2009;40:287–90.

    Article  CAS  PubMed  Google Scholar 

  67. Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130(10):2646–60.

    Article  PubMed  Google Scholar 

  68. Bolduc M-E, Du Plessis AJ, Sullivan NR, Guizard N, Zhang X, Robertson RL, et al. Regional cerebellar volumes predict functional outcome in children with cerebellar malformations. Cerebellum. 2011;11(2):531–42.

    Article  Google Scholar 

  69. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Barth A, Bogousslavsky J, Regli F. The clinical and topographic spectrum of cerebellar infarcts: a clinical—magnetic resonance imaging correlation study. Ann Neurol. 1993;33(5):451–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Marie Brossard-Racine received post-doctoral fellowship support from the Canadian Institute of Health Research at the time of manuscript preparation. We also want to thank Dr. Maria Powell for her assistance with manuscript review/editing.

Conflict of Interest

We, the authors, certify that we have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Limperopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brossard-Racine, M., du Plessis, A.J. & Limperopoulos, C. Developmental Cerebellar Cognitive Affective Syndrome in Ex-preterm Survivors Following Cerebellar Injury. Cerebellum 14, 151–164 (2015). https://doi.org/10.1007/s12311-014-0597-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0597-9

Keywords

Navigation