Skip to main content

Advertisement

Log in

The Association of RAB18 Gene Polymorphism (rs3765133) with Cerebellar Volume in Healthy Adults

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Genetic factors are responsible for the development of the human brain. Certain genetic factors are known to increase the risk of common brain disorders and affect the brain structure. Therefore, even in healthy people, these factors have a role in the development of specific brain regions. Loss-of-function mutations in the RAB18 gene (RAB18) cause Warburg Micro syndrome, which is associated with reduced brain size and deformed brain structures. In this study, we hypothesized that the RAB18 variant might influence regional brain volumes in healthy people. The study participants comprised 246 normal volunteers between 21 and 59 years of age (mean age of 37.8 ± 12.0 years; 115 men, 131 women). Magnetic resonance imaging (MRI) and genotypes of RAB18 rs3765133 were examined for each participant. The differences in regional brain volumes between T homozygotes and A-allele carriers were tested using voxel-based morphometry. The results showed that RAB18 rs3765133 T homozygote group exhibited larger gray matter (GM) volume in the left middle temporal and inferior frontal gyrus of the cerebrum than the A-allele carriers. An opposite effect was observed in both the posterior lobes and right tonsil of the cerebellum, in which the GM volume of RAB18 rs3765133 T homozygotes was smaller than that of the A-allele carriers (all P FWE < 0.05). Our findings suggest that RAB18 rs3765133 polymorphism affects the deve-lopment of specific brain regions, particularly the cerebellum, in healthy people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Westbury CF, Zatorre RJ, Evans AC. Quantifying variability in the planum temporale: a probability map. Cereb Cortex. 1999;9(4):392–405.

    Article  CAS  PubMed  Google Scholar 

  2. Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K. Brodmann’s areas 17 and 18 brought into stereotaxic space—where and how variable? Neuroimage. 2000;11(1):66–84.

    Article  CAS  PubMed  Google Scholar 

  3. Geyer S, Schormann T, Mohlberg H, Zilles K. Areas 3a, 3b, and 1 of human primary somatosensory cortex. Part 2. Spatial normalization to standard anatomical space. Neuroimage. 2000;11 (6 Pt 1):684–96.

  4. Carmelli D, DeCarli C, Swan GE, Jack LM, Reed T, Wolf PA, et al. Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke. 1998;29(6):1177–81.

    Article  CAS  PubMed  Google Scholar 

  5. Pfefferbaum A, Sullivan EV, Swan GE, Carmelli D. Brain structure in men remains highly heritable in the seventh and eighth decades of life. Neurobiol Aging. 2000;1:63–74.

    Article  Google Scholar 

  6. Bartley AJ, Jones DW, Weinberger DR. Genetic variability of human brain size and cortical gyral patterns. Brain. 1997;120(Pt 2):257–69.

    Article  PubMed  Google Scholar 

  7. Pennington BF, Filipek PA, Lefly D, Chhabildas N, Kennedy DN, Simon JH, et al. A twin MRI study of size variations in human brain. J Cogn Neurosci. 2000;12(1):223–32.

    Article  CAS  PubMed  Google Scholar 

  8. Reveley AM, Reveley MA, Chitkara B, Clifford C. The genetic basis of cerebral ventricular volume. Psychiatry Res. 1984;13(3):261–6.

    Article  CAS  PubMed  Google Scholar 

  9. Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex. 2009;19(11):2728–35.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Woods CG, Bond J, Enard W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am J Hum Genet. 2005;76(5):717–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bem D, Yoshimura S, Nunes-Bastos R, Bond FC, Kurian MA, Rahman F, et al. Loss-of-function mutations in RAB18 cause Warburg micro syndrome. Am J Hum Genet. 2011;88(4):499–507.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Warburg M, Sjo O, Fledelius HC, Pedersen SA. Autosomal recessive microcephaly, microcornea, congenital cataract, mental retardation, optic atrophy, and hypogenitalism. Micro syndrome Am J Dis Child. 1993;147(12):1309–12.

    Article  CAS  Google Scholar 

  13. Aligianis IA, Johnson CA, Gissen P, Chen D, Hampshire D, Hoffmann K, et al. Mutations of the catalytic subunit of RAB3GAP cause Warburg Micro syndrome. Nat Genet. 2005;37(3):221–3.

    Article  CAS  PubMed  Google Scholar 

  14. Abdel-Salam GM, Hassan NA, Kayed HF, Aligianis IA. Phenotypic variability in Micro syndrome: report of new cases. Genet Couns. 2007;18(4):423–35.

    CAS  PubMed  Google Scholar 

  15. Morris-Rosendahl DJ, Segel R, Born AP, Conrad C, Loeys B, Brooks SS, et al. New RAB3GAP1 mutations in patients with Warburg Micro Syndrome from different ethnic backgrounds and a possible founder effect in the Danish. Eur J Hum Genet. 2010;18(10):1100–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Handley MT, Morris-Rosendahl DJ, Brown S, Macdonald F, Hardy C, Bem D, et al. Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in warburg micro syndrome and Martsolf syndrome. Hum Mutat. 2013;34(5):686–96.

    Article  CAS  PubMed  Google Scholar 

  17. Novick P, Zerial M. The diversity of Rab proteins in vesicle transport. Curr Opin Cell Biol. 1997;9(4):496–504.

    Article  CAS  PubMed  Google Scholar 

  18. Lutcke A, Parton RG, Murphy C, Olkkonen VM, Dupree P, Valencia A, et al. Cloning and subcellular localization of novel rab proteins reveals polarized and cell type-specific expression. J Cell Sci. 1994;107(Pt 12):3437–48.

    PubMed  Google Scholar 

  19. Yu H, Leaf DS, Moore HP. Gene cloning and characterization of a GTP-binding Rab protein from mouse pituitary AtT-20 cells. Gene. 1993;132(2):273–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci. 2005;118(Pt 12):2601–11.

    Article  CAS  PubMed  Google Scholar 

  21. Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG. Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J Biol Chem. 2005;280(51):42325–35.

    Article  CAS  PubMed  Google Scholar 

  22. Martin S, Parton RG. Characterization of Rab18, a lipid droplet-associated small GTPase. Methods Enzymol. 2008;438:109–29.

    Article  CAS  PubMed  Google Scholar 

  23. Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry. 2012;17(9):887–905.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of clinical psychiatry. 1998;59(20):22–33.

    PubMed  Google Scholar 

  25. Folstein MF, Folstein SE, McHugh PR. Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician J Psychiatr Res. 1975;12(3):189–98.

    CAS  Google Scholar 

  26. Wechsler D. Wechsler adult intelligence scale. Third Edition ed. San Antonio: The Psychological Corporation; 1997.

    Google Scholar 

  27. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113.

    Article  CAS  PubMed  Google Scholar 

  28. Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI. Frontiers in systems neuroscience. 2010;4:13.

    PubMed Central  PubMed  Google Scholar 

  29. Ashburner J, Friston KJ. Unified segmentation. NeuroImage. 2005;26(3):839–51.

    Article  PubMed  Google Scholar 

  30. Rodriguez Criado G, Rufo M. Gomez de Terreros I. A second family with Micro syndrome Clin Dysmorphol. 1999;8(4):241–5.

    CAS  Google Scholar 

  31. Pulido MR, Diaz-Ruiz A, Jimenez-Gomez Y, Garcia-Navarro S, Gracia-Navarro F, Tinahones F, et al. Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS One. 2011;6(7):e22931.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Takase M, Ukena K, Yamazaki T, Kominami S, Tsutsui K. Pregnenolone, pregnenolone sulfate, and cytochrome P450 side-chain cleavage enzyme in the amphibian brain and their seasonal changes. Endocrinology. 1999;140(4):1936–44.

    CAS  PubMed  Google Scholar 

  33. Ukena K, Usui M, Kohchi C, Tsutsui K. Cytochrome P450 side-chain cleavage enzyme in the cerebellar Purkinje neuron and its neonatal change in rats. Endocrinology. 1998;139(1):137–47.

    CAS  PubMed  Google Scholar 

  34. Ukena K, Kohchi C, Tsutsui K. Expression and activity of 3beta-hydroxysteroid dehydrogenase/delta5-delta4-isomerase in the rat Purkinje neuron during neonatal life. Endocrinology. 1999;140(2):805–13.

    CAS  PubMed  Google Scholar 

  35. Sakamoto H, Mezaki Y, Shikimi H, Ukena K, Tsutsui K. Dendritic growth and spine formation in response to estrogen in the developing Purkinje cell. Endocrinology. 2003;144(10):4466–77.

    Article  CAS  PubMed  Google Scholar 

  36. Sasahara K, Shikimi H, Haraguchi S, Sakamoto H, Honda S, Harada N, et al. Mode of action and functional significance of estrogen-inducing dendritic growth, spinogenesis, and synaptogenesis in the developing Purkinje cell. J Neurosci. 2007;27(28):7408–17.

    Article  CAS  PubMed  Google Scholar 

  37. de Leeuw R, Albuquerque RJ, Andersen AH, Carlson CR. Influence of estrogen on brain activation during stimulation with painful heat. J Oral Maxillofac Surg. 2006;64(2):158–66.

    Article  PubMed  Google Scholar 

  38. Nassogne MC, Henrot B, Saint-Martin C, Kadhim H, Dobyns WB, Sebire G. Polymicrogyria and motor neuropathy in Micro syndrome. Neuropediatrics. 2000;31(4):218–21.

    Article  CAS  PubMed  Google Scholar 

  39. Graham Jr JM, Hennekam R, Dobyns WB, Roeder E, Busch D. MICRO syndrome: an entity distinct from COFS syndrome. Am J Med Genet A. 2004;128A(3):235–45.

    Article  PubMed  Google Scholar 

  40. Ainsworth JR, Morton JE, Good P, Woods CG, George ND, Shield JP, et al. Micro syndrome in Muslim Pakistan children. Ophthalmology. 2001;108(3):491–7.

    Article  CAS  PubMed  Google Scholar 

  41. Derbent M, Agras PI, Gedik S, Oto S, Alehan F, Saatci U. Congenital cataract, microphthalmia, hypoplasia of corpus callosum and hypogenitalism: report and review of Micro syndrome. Am J Med Genet A. 2004;128A(3):232–4.

    Article  PubMed  Google Scholar 

  42. Savitz J, Solms M, Ramesar R. The molecular genetics of cognition: dopamine. COMT and BDNF Genes Brain Behav. 2006;5(4):311–28.

    Article  CAS  Google Scholar 

  43. Honea R, Verchinski BA, Pezawas L, Kolachana BS, Callicott JH, Mattay VS, et al. Impact of interacting functional variants in COMT on regional gray matter volume in human brain. Neuroimage. 2009;45(1):44–51.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Liu ME, Huang CC, Yang AC, Tu PC, Yeh HL, Hong CJ, et al. Effect of Bcl-2 rs956572 polymorphism on age-related gray matter volume changes. PLoS One.8 (2):e56663.

  45. van der Heijden CD, Rijpkema M, Arias-Vasquez A, Hakobjan M, Scheffer H, Fernandez G, et al. Genetic variation in ataxia gene ATXN7 influences cerebellar grey matter volume in healthy adults. Cerebellum. 2013;12(3):390–5.

  46. Tsai A, Huang CC, Yang AC, Liu ME, Tu PC, Hong CJ, et al. Association of BACE1 gene polymorphism with cerebellar volume but not cognitive function in normal individuals. Dement Geriatr Cogn Dis Extra. 2012;2(1):632–7.

  47. Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci. 2006;7(10):818–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants of Taiwan National Science Council (NSC 102-2314-B-075-005-MY3); Taipei Veterans General Hospital (V103E9-004 and V102C-173); and the Ministry of Education Taiwan, Aim for the Top University Plan.

Conflict of Interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Jee Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, CY., Yang, A.C., Huang, CC. et al. The Association of RAB18 Gene Polymorphism (rs3765133) with Cerebellar Volume in Healthy Adults. Cerebellum 13, 616–622 (2014). https://doi.org/10.1007/s12311-014-0579-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0579-y

Keywords

Navigation