Skip to main content

Advertisement

Log in

Consensus Paper: The Cerebellum's Role in Movement and Cognition

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

While the cerebellum's role in motor function is well recognized, the nature of its concurrent role in cognitive function remains considerably less clear. The current consensus paper gathers diverse views on a variety of important roles played by the cerebellum across a range of cognitive and emotional functions. This paper considers the cerebellum in relation to neurocognitive development, language function, working memory, executive function, and the development of cerebellar internal control models and reflects upon some of the ways in which better understanding the cerebellum's status as a “supervised learning machine” can enrich our ability to understand human function and adaptation. As all contributors agree that the cerebellum plays a role in cognition, there is also an agreement that this conclusion remains highly inferential. Many conclusions about the role of the cerebellum in cognition originate from applying known information about cerebellar contributions to the coordination and quality of movement. These inferences are based on the uniformity of the cerebellum's compositional infrastructure and its apparent modular organization. There is considerable support for this view, based upon observations of patients with pathology within the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Marvel note: funding source for this study: K01 DA030442 (NIH)

  2. It is proposed that this feature of the nearly limitless blending of internal models of sound patterns with visual-spatial imagery explains the origin of what Hockett (185) referred to as the “duality of patterning” feature of language (meaningless sounds or symbols can be rearranged to produce an unlimited number of messages, e.g., Hockett described how Morse Code exemplifies this feature). Hockett argued that duality of patterning is unique to human language. However, since monkeys have shown fronto-cerebellar action in switching tools [170] indicating an open-ended synthesis of multiple visual-spatial internal models, duality of patterning appears to be shared, at least in nascent form, with other primate species, and, therefore, that duality patterning originates not in the tags that place moments of visual-spatial working memory in long-term memory, but in the limitless potential of internal models of those visual spatial moments themselves.

References

  1. Schmahmann JD. The cerebellum and cognition. London: Academic; 1997.

  2. Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):44–56.

    CAS  PubMed  Google Scholar 

  3. Baillieux H, Smet HJ, Paquier PF, De Deyn PP, Marien P. Cerebellar neurocognition: Insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110(8):763–73.

    Google Scholar 

  4. Kuper M, Dimitrova A, Thurling M, Maderwald S, Roths J, Elles HG, et al. Evidence for a motor and a non-motor domain in the human dentate nucleus—An fMRI study. Neuroimage. 2011;54(4):2612–22.

    CAS  PubMed  Google Scholar 

  5. Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, De LM, Leggio MG. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7(4):611–5.

    PubMed  Google Scholar 

  6. Ito M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 1993;16(11):448–50.

    CAS  PubMed  Google Scholar 

  7. Parvizi J. Corticocentric myopia: old bias in new cognitive sciences. Trends Cogn Sci. 2009;13(8):354–9.

    PubMed  Google Scholar 

  8. Manto M, Haines D. Cerebellar research: two centuries of discoveries. The Cerebellum. 2012;11:446–8.

    Google Scholar 

  9. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

    PubMed  Google Scholar 

  10. Sokolov AA, Erb M, Grodd W, Pavlova MA. Structural loop between the cerebellum and the superior temporal sulcus: evidence from diffusion tensor imaging. Cerebral Cortex. 2013;(in press).

  11. Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16(11):444–7.

    CAS  PubMed  Google Scholar 

  12. Middleton FA, Strick PL. Basal ganglia and cerebellar output influences non-motor function. Mol Psychiatry. 1996;1(6):429–33.

    CAS  PubMed  Google Scholar 

  13. Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum. 2012;11(2):352–65.

    PubMed  Google Scholar 

  14. Balsters JH, Ramnani N. Symbolic representations of action in the human cerebellum. Neuroimage. 2008;43(2):388–98.

    CAS  PubMed  Google Scholar 

  15. Shiffrin RM, Schneider W. Automatic and controlled processing revisited. Psychol Rev. 1984;91(2):269–76.

    CAS  PubMed  Google Scholar 

  16. Blomfield S, Marr D. How the cerebellum may be used. Nature. 1970;227(5264):1224–8.

    CAS  PubMed  Google Scholar 

  17. Marr D. A theory of cerebellar cortex. J Physiol. 1969;202(2):437–70.

    CAS  PubMed  Google Scholar 

  18. Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.

    Google Scholar 

  19. Greger B, Norris S. Simple spike firing in the posterior lateral cerebellar cortex of Macaque Mulatta was correlated with success-failure during a visually guided reaching task. Exp Brain Res. 2005;167(4):660–5.

    PubMed  Google Scholar 

  20. Gilbert PF, Thach WT. Purkinje cell activity during motor learning. Brain Res. 1977;128(2):309–28.

    CAS  PubMed  Google Scholar 

  21. Ojakangas CL, Ebner TJ. Purkinje cell complex and simple spike changes during a voluntary arm movement learning task in the monkey. J Neurophysiol. 1992;68(6):2222–36.

    CAS  PubMed  Google Scholar 

  22. Medina JF, Lisberger SG. Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci. 2008;11(10):1185–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Schmahmann JD, Rosene DL, Pandya DN. Motor projections to the basis pontis in rhesus monkey. J Comp Neurol. 2004;478(3):248–68.

    PubMed  Google Scholar 

  24. Glickstein M, May III JG, Mercier BE. Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol. 1985;235(3):343–59.

    CAS  PubMed  Google Scholar 

  25. Brodal P. The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain. 1978;101(2):251–83.

    CAS  PubMed  Google Scholar 

  26. Prevosto V, Graf W, Ugolini G. Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb Cortex. 2010;20(1):214–28.

    PubMed  Google Scholar 

  27. Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JL, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex. 2006;16(6):811–8.

    PubMed  Google Scholar 

  28. Ramnani N. Frontal lobe and posterior parietal contributions to the cortico-cerebellar system. Cerebellum. 2012;11(2):366–83.

    PubMed  Google Scholar 

  29. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    CAS  PubMed  Google Scholar 

  30. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.

    CAS  PubMed  Google Scholar 

  31. Schmahmann JD, Pandya DN. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol. 1989;289(1):53–73.

    CAS  PubMed  Google Scholar 

  32. Schmahmann JD, Pandya DN. Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. J Comp Neurol. 1993;337(1):94–112.

    CAS  PubMed  Google Scholar 

  33. Schmahmann JD, Pandya DN. Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neurosci Lett. 1995;199(3):175–8.

    CAS  PubMed  Google Scholar 

  34. Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.

    CAS  PubMed  Google Scholar 

  35. Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci. 1997;17(1):438–58.

    CAS  PubMed  Google Scholar 

  36. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22.

    CAS  PubMed  Google Scholar 

  37. Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. Neuroimage. 2010;49(3):2045–52.

    CAS  PubMed  Google Scholar 

  38. Bunge SA. How we use rules to select actions: a review of evidence from cognitive neuroscience. Cogn Affect Behav Neurosci. 2004;4(4):564–79.

    PubMed  Google Scholar 

  39. Platt ML, Glimcher PW. Neural correlates of decision variables in parietal cortex. Nature. 1999;400(6741):233–8.

    CAS  PubMed  Google Scholar 

  40. Wallis JD, Anderson KC, Miller EK. Single neurons in prefrontal cortex encode abstract rules. Nature. 2001;411(6840):953–6.

    CAS  PubMed  Google Scholar 

  41. Wallis JD, Miller EK. From rule to response: neuronal processes in the premotor and prefrontal cortex. J Neurophysiol. 2003;90(3):1790–806.

    PubMed  Google Scholar 

  42. Miller EK, Nieder A, Freedman DJ, Wallis JD. Neural correlates of categories and concepts. Curr Opin Neurobiol. 2003;13(2):198–203.

    CAS  PubMed  Google Scholar 

  43. O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953–65.

    PubMed  Google Scholar 

  44. Balsters JH, Ramnani N. Cerebellar plasticity and the automation of first-order rules. Journal of Neuroscience. 2011;31(6):2305–12.

    Google Scholar 

  45. Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.

    CAS  PubMed  Google Scholar 

  46. Voogd J. Cerebellum and precerebellar nuclei. In: Paxinos G, Mai JK, editors. The human nervous system. 2nd ed. San Diego: Academic; 2004. p. 321–92.

    Google Scholar 

  47. Ito M. The cerebellum and neural control. New York: Raven Press; 1984.

    Google Scholar 

  48. Schmahmann JD. The role of the cerebellum in affect and psychosis. J Neurolinguistics. 2000;13(23):189–214.

    Google Scholar 

  49. Schmahmann JD. Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci. 1998;2(9):362–71.

    CAS  PubMed  Google Scholar 

  50. Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.

    PubMed  Google Scholar 

  51. Schmahmann JD, Pandya DN. The cereberocerebellar system. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 31–60.

    Google Scholar 

  52. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.

    PubMed  Google Scholar 

  53. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.

    PubMed  Google Scholar 

  54. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2012;11(2):336–51.

    PubMed  Google Scholar 

  56. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.

    PubMed  Google Scholar 

  57. Schmahmann JD, MacMore J, Vangel M. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience. 2009;162(3):852–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134(Pt 12):3672–86.

    PubMed  Google Scholar 

  59. Snider RC, Stowell A. Receiving areas of the tactile, auditory, and visual systems in the cerebellum. J Neurophysiol. 1944;7:331–57.

    Google Scholar 

  60. Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30(1):36–51.

    CAS  PubMed  Google Scholar 

  61. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123(Pt 5):1041–50.

    PubMed  Google Scholar 

  62. Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98.

    CAS  PubMed  Google Scholar 

  63. Chheda M, Sherman J, Schmahmann JD. Neurologic, psychiatric and cognitive manifestations in cerebellar agenesis. Neurology. 2002;58 suppl 3:356.

    Google Scholar 

  64. Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130(Pt 10):2646–60.

    PubMed  Google Scholar 

  65. Geschwind DH. Focusing attention on cognitive impairment in spinocerebellar ataxia. Arch Neurol. 1999;56(1):20–2.

    CAS  PubMed  Google Scholar 

  66. Thompson RF, Bao S, Chen L, Cipriano BD, Grethe JS, Kim JJ. Associative learning. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 151–89.

    Google Scholar 

  67. Parvizi J, Joseph J, Press DZ, Schmahmann JD. Pathological laughter and crying in patients with multiple system atrophy-cerebellar type. Mov Disord. 2007;22(6):798–803.

    PubMed  Google Scholar 

  68. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.

    PubMed  Google Scholar 

  69. Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, et al. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124(1–3):91–100.

    PubMed Central  PubMed  Google Scholar 

  70. Ito M. The modifiable neuronal network of the cerebellum. Jpn J Physiol. 1984;34(5):781.

    CAS  PubMed  Google Scholar 

  71. Allen G, Courchesne E. The cerebellum and non-motor function: clinical implications. Mol Psychiatry. 1998;3(3):207–10.

    CAS  PubMed  Google Scholar 

  72. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78.

    PubMed  Google Scholar 

  73. Lidzba K, Wilke M, Staudt M, Krageloh-Mann I, Grodd W. Reorganization of the cerebro-cerebellar network of language production in patients with congenital left-hemispheric brain lesions. Brain Lang. 2008;106(3):204–10.

    CAS  PubMed  Google Scholar 

  74. Riva D. Higher cognitive function processing in developmental age: specialized areas, connections, and districuted networks. In: Riva D, Njiokiktjien C, Bulgheroni S, editors. Brain lesion localization and developmental functions. Montrouge, France: John Libbey Eurotext; 2011. p. 1–8.

    Google Scholar 

  75. Schmahmann JD, Pandya DN. Fiber pathways of the brain. USA: OUP; 2009.

    Google Scholar 

  76. Jissendi P, Baudry S, Baleriaux D. Diffusion tensor imaging (DTI) and tractography of the cerebellar projections to prefrontal and posterior parietal cortices: a study at 3T. J Neuroradiol. 2008;35(1):42–50.

    CAS  PubMed  Google Scholar 

  77. Uddin LQ, Supekar K, Menon V. Typical and atypical development of functional human brain networks: insights from resting-state FMRI. Front Syst Neurosci. 2010;4:21.

    PubMed Central  PubMed  Google Scholar 

  78. Limperopoulos C, du Plessis AJ. Disorders of cerebellar growth and development. Curr Opin Pediatr. 2006;18(6):621–7.

    PubMed  Google Scholar 

  79. Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123(Pt 5):1051–61.

    PubMed  Google Scholar 

  80. Riva D, Vago C, Usilla A, Treccani C, Pantaleoni C, D'Arrigo S. The role of the cerebellum in processing higher cognitive and social functions in congenital and acquired disease in developmental age. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge, France: John Libbey Eurotext; 2010. p. 133–43.

    Google Scholar 

  81. Bolduc ME, Limperopoulos C. Neurodevelopmental outcomes in children with cerebellar malformations: a systematic review. Dev Med Child Neurol. 2009;51(4):256–67.

    PubMed  Google Scholar 

  82. Riva D, Pantaleoni C, Nicheli F, Bulgheroni S, Bagnasco I. Cervelletto e funzioni psyichiche superiori in eta evolutiva: risultati preliminari in una serie di bambini con ipoplasia cerebellare congenita. Giorn Neuropsich Eta Evol. 2001;21:252–6.

    Google Scholar 

  83. Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31(3):137–45.

    CAS  PubMed  Google Scholar 

  84. Riva D, Annunziata S, Contarino V, Erbetta A, Aquino D, Bulgheroni S. Gray matter reduction in the vermis and CRUS-II is associated with social and interaction deficits in low-functioning children with autistic spectrum disorders: a VBM-DARTEL Study. Cerebellum 2013;(in press).

  85. Riva D, Giorgi C. The contribution of the cerebellum to mental and social functions in developmental age. Fiziol Cheloveka. 2000;26(1):27–31.

    CAS  PubMed  Google Scholar 

  86. Steinlin M, Imfeld S, Zulauf P, Boltshauser E, Lovblad KO, Ridolfi LA, et al. Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain. 2003;126(Pt 9):1998–2008.

    PubMed  Google Scholar 

  87. Scott RB, Stoodley CJ, Anslow P, Paul C, Stein JF, Sugden EM, et al. Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol. 2001;43(10):685–91.

    CAS  PubMed  Google Scholar 

  88. Paquier P, van Mourik M, van Dongen H, Catsman-Berrevoets C, Brison A. Cerebellar mutism syndromes with subsequent dysarthria: a study of three children and a review of the literature. Rev Neurol (Paris). 2003;159(11):1017–27.

    CAS  Google Scholar 

  89. Riva D. The cerebellar contribution to language and sequential functions: evidence from a child with cerebellitis. Cortex. 1998;34(2):279–87.

    CAS  PubMed  Google Scholar 

  90. Tavano A, Fabbro F, Borgatti R. Speaking without the cerebellum. In: Schalley AC, Khlentzos D, editors. Mental states. 1st ed. Amsterdam: John Benjamins Publishing Company; 2007. p. 171–90.

    Google Scholar 

  91. Bolduc ME, du Plessis AJ, Sullivan N, Khwaja OS, Zhang X, Barnes K, et al. Spectrum of neurodevelopmental disabilities in children with cerebellar malformations. Dev Med Child Neurol. 2011;53(5):409–16.

    PubMed  Google Scholar 

  92. Ronning C, Sundet K, Due-Tonnessen B, Lundar T, Helseth E. Persistent cognitive dysfunction secondary to cerebellar injury in patients treated for posterior fossa tumors in childhood. Pediatr Neurosurg. 2005;41(1):15–21.

    PubMed  Google Scholar 

  93. Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4(1):2–6.

    CAS  PubMed  Google Scholar 

  94. Burk K. Cognition in hereditary ataxia. Cerebellum. 2007;6(3):280–6.

    PubMed  Google Scholar 

  95. Lasek K, Lencer R, Gaser C, Hagenah J, Walter U, Wolters A, et al. Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain. 2006;129(Pt 9):2341–52.

    CAS  PubMed  Google Scholar 

  96. Koziol LF, Budding DE. Subcortical structures and cognition: implications for neuropsychological assessment. New York: Springer; 2009.

    Google Scholar 

  97. Manto M, Lorivel T. Cognitive repercussions of hereditary cerebellar disorders. Cortex. 2011;47(1):81–100.

    PubMed  Google Scholar 

  98. Lalonde R, Filali M, Bensoula AN, Lestienne F. Sensorimotor learning in three cerebellar mutant mice. Neurobiol Learn Mem. 1996;65(2):113–20.

    CAS  PubMed  Google Scholar 

  99. Lalonde R, Strazielle C. Motor performance and regional brain metabolism of spontaneous murine mutations with cerebellar atrophy. Behav Brain Res. 2001;125(1):103–8.

    CAS  PubMed  Google Scholar 

  100. D'Agata F, Caroppo P, Baudino B, Caglio M, Croce M, Bergui M, et al. The recognition of facial emotions in spinocerebellar ataxia patients. Cerebellum. 2011;10(3):600–10.

    PubMed  Google Scholar 

  101. Kameya T, Abe K, Aoki M, Sahara M, Tobita M, Konno H, et al. Analysis of spinocerebellar ataxia type 1 (SCA1)-related CAG trinucleotide expansion in Japan. Neurology. 1995;45(8):1587–94.

    CAS  PubMed  Google Scholar 

  102. Spadaro M, Giunti P, Lulli P, Frontali M, Jodice C, Cappellacci S, et al. HLA-linked spinocerebellar ataxia: a clinical and genetic study of large Italian kindreds. Acta Neurol Scand. 1992;85(4):257–65.

    CAS  PubMed  Google Scholar 

  103. Giunti P, Sweeney MG, Spadaro M, Jodice C, Novelletto A, Malaspina P, et al. The trinucleotide repeat expansion on chromosome 6p (SCA1) in autosomal dominant cerebellar ataxias. Brain. 1994;117(Pt 4):645–9.

    PubMed  Google Scholar 

  104. Sasaki H, Fukazawa T, Yanagihara T, Hamada T, Shima K, Matsumoto A, et al. Clinical features and natural history of spinocerebellar ataxia type 1. Acta Neurol Scand. 1996;93(1):64–71.

    CAS  PubMed  Google Scholar 

  105. Storey E, Forrest SM, Shaw JH, Mitchell P, Gardner RJ. Spinocerebellar ataxia type 2: clinical features of a pedigree displaying prominent frontal-executive dysfunction. Arch Neurol. 1999;56(1):43–50.

    CAS  PubMed  Google Scholar 

  106. Wadia NH. A variety of olivopontocerebellar atrophy distinguished by slow eye movements and peripheral neuropathy. Adv Neurol. 1984;41:149–77.

    CAS  PubMed  Google Scholar 

  107. Burk K, Stevanin G, Didierjean O, Cancel G, Trottier Y, Skalej M, et al. Clinical and genetic analysis of three German kindreds with autosomal dominant cerebellar ataxia type I linked to the SCA2 locus. J Neurol. 1997;244(4):256–61.

    CAS  PubMed  Google Scholar 

  108. Le PF, Zappala G, Saponara R, Domina E, Restivo D, Reggio E, et al. Cognitive findings in spinocerebellar ataxia type 2: relationship to genetic and clinical variables. J Neurol Sci. 2002;201(1–2):53–7.

    Google Scholar 

  109. Maruff P, Tyler P, Burt T, Currie B, Burns C, Currie J. Cognitive deficits in Machado–Joseph disease. Ann Neurol. 1996;40(3):421–7.

    CAS  PubMed  Google Scholar 

  110. Riess O, Rüb U, Pastore A, Bauer P, Schöls L. SCA3: neurological features, pathogenesis and animal models. Cerebellum. 2008;7(2):125–37.

    CAS  PubMed  Google Scholar 

  111. Coutinho P, Andrade C. Autosomal dominant system degeneration in Portuguese families of the Azores Islands. A new genetic disorder involving cerebellar, pyramidal, extrapyramidal and spinal cord motor functions. Neurology. 1978;28(7):703–9.

    CAS  PubMed  Google Scholar 

  112. Fowler HL. Machado–Joseph–Azorean disease. A ten-year study. Arch Neurol. 1984;41(9):921–5.

    CAS  PubMed  Google Scholar 

  113. Sequeiros J, Coutinho P. Epidemiology and clinical aspects of Machado–Joseph disease. Adv Neurol. 1993;61:139–53.

    CAS  PubMed  Google Scholar 

  114. Globas C, Bosch S, Zuhlke C, Daum I, Dichgans J, Burk K. The cerebellum and cognition. Intellectual function in spinocerebellar ataxia type 6 (SCA6). J Neurol. 2003;250(12):1482–7.

    CAS  PubMed  Google Scholar 

  115. Stevanin G, Durr A, Benammar N, Brice A. Spinocerebellar ataxia with mental retardation (SCA13). Cerebellum. 2005;4(1):43–6.

    CAS  PubMed  Google Scholar 

  116. Tsuji S, Onodera O, Goto J, Nishizawa M. Sporadic ataxias in Japan: population-based epidemiological study. Cerebellum. 2008;7(2):189–97.

    CAS  PubMed  Google Scholar 

  117. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.

    CAS  PubMed  Google Scholar 

  118. Andreasen NC, Oleary DS, Arndt S, Cizadlo T, Hurtig R, Rezai K, et al. Short-term and long-term verbal memory—a positron emission tomography study. Proc Natl Acad Sci U S A. 1995;92(11):5111–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Andreasen NC, Oleary DS, Arndt S, Cizadlo T, Rezai K, Watkins GL, et al. PET studies of memory: novel and practiced free recall of complex narratives.1. Neuroimage. 1995;2(4):284–95.

    CAS  PubMed  Google Scholar 

  120. Andreasen NC, Oleary DS, Cizadlo T, Arndt S, Rezai K, Watkins GL, et al. PET studies of memory: novel versus practiced free recall of word lists.2. Neuroimage. 1995;2(4):296–305.

    CAS  PubMed  Google Scholar 

  121. Andreasen NC, Oleary DS, Cizadlo T, Arndt S, Rezai K, Watkins L, et al. Remembering the past—2 facets of episodic memory explored with positron emission tomography. Am J Psychiatry. 1995;152(11):1576–85.

    CAS  PubMed  Google Scholar 

  122. Andreasen NC, O'Leary DS, Paradiso S, Cizadlo T, Arndt S, Watkins GL, et al. The cerebellum plays a role in conscious episodic memory retrieval. Hum Brain Mapp. 1999;8(4):226–34.

    CAS  PubMed  Google Scholar 

  123. Andreasen NC, Calarge CA, O'Leary DS. Theory of mind and schizophrenia: a positron emission tomography study of medication-free patients. Schizophr Bull. 2008;34(4):708–19.

    PubMed  Google Scholar 

  124. Andreasen NC, Paradiso S, O'Leary DS. “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical subcortical-cerebellar circuitry? Schizophr Bull. 1998;24(2):203–18.

    CAS  PubMed  Google Scholar 

  125. Wassink TH, Andreasen NC, Nopoulos P, Flaum M. Cerebellar morphology as a predictor of symptom and psychosocial outcome in schizophrenia. Biol Psychiatry. 1999;45(1):41–8.

    CAS  PubMed  Google Scholar 

  126. Nopoulos PC, Ceilley JW, Gailis EA, Andreasen NC. An MRI study of cerebellar vermis morphology in patients with schizophrenia: Evidence in support of the cognitive dysmetria concept. Biol Psychiatry. 1999;46(5):703–11.

    CAS  PubMed  Google Scholar 

  127. Andreasen NC, Cohen G, Harris G, Cizadlo T, Parkkinen J, Rezai K, et al. Image-processing for the study of brain structure and function—problems and programs. J Neuropsychiatry Clin Neurosci. 1992;4(2):125–33.

    CAS  PubMed  Google Scholar 

  128. Andreasen NC, Oleary DS, Flaum M, Nopoulos P, Watkins GL, Ponto LLB, et al. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet. 1997;349(9067):1730–4.

    CAS  PubMed  Google Scholar 

  129. Andreasen NC. Linking mind and brain in the study of mental illnesses: a project for a scientific psychopathology. Science. 1997;275(5306):1586–93.

    CAS  PubMed  Google Scholar 

  130. Nopoulos P, Torres I, Flaum M, Andreasen NC, Ehrhardt JC, Yuh WTC. Brain morphology in first-episode schizophrenia. Am J Psychiatry. 1995;152(12):1721–3.

    CAS  PubMed  Google Scholar 

  131. Nopoulos PC, Flaum M, Andreasen NC, Swayze VW. Gray-matter heterotopias in schizophrenia. Psychiatry Res-Neuroimaging. 1995;61(1):11–4.

    CAS  Google Scholar 

  132. Wiser AK, Andreasen NC, O'Leary DS, Watkins GL, Ponto LLB, Hichwa RD. Dysfunctional cortico-cerebellar circuits cause ‘cognitive dysmetria’ in schizophrenia. Neuroreport. 1998;9(8):1895–9.

    CAS  PubMed  Google Scholar 

  133. Crespo-Facorro B, Kim JJ, Andreasen NC, O'Leary DS, Wiser AK, Bailey JM, et al. Human frontal cortex: an MRI-based parcellation method. Neuroimage. 1999;10(5):500–19.

    CAS  PubMed  Google Scholar 

  134. Crespo-Facorro B, Wiser AK, Andreasen NC, O'Leary DS, Watkins GL, Boles Ponto LL, et al. Neural basis of novel and well-learned recognition memory in schizophrenia: a positron emission tomography study. Hum Brain Mapp. 2001;12(4):219–31.

    CAS  PubMed  Google Scholar 

  135. Crespo-Facorro B, Paradiso S, Andreasen NC, O'Leary DS, Watkins GL, Ponto LL, et al. Neural mechanisms of anhedonia in schizophrenia: a PET study of response to unpleasant and pleasant odors. JAMA. 2001;286(4):427–35.

    CAS  PubMed  Google Scholar 

  136. Miller DD, Andreasen NC, O'Leary DS, Watkins GL, Boles Ponto LL, Hichwa RD. Comparison of the effects of risperidone and haloperidol on regional cerebral blood flow in schizophrenia. Biol Psychiatry. 2001;49(8):704–15.

    CAS  PubMed  Google Scholar 

  137. Magnotta VA, Adix ML, Caprahan A, Lim K, Gollub R, Andreasen NC. Investigating connectivity between the cerebellum and thalamus in schizophrenia using diffusion tensor tractography: a pilot study. Psychiatry Res. 2008;163(3):193–200.

    PubMed  Google Scholar 

  138. Baddeley A. Working memory. Science. 1992;255(5044):556–9.

    CAS  PubMed  Google Scholar 

  139. Baddeley A, Gathercole S, Papagno C. The phonological loop as a language learning device. Psychol Rev. 1998;105(1):158–73.

    CAS  PubMed  Google Scholar 

  140. Aboitiz F, Garcia RR, Bosman C, Brunetti E. Cortical memory mechanisms and language origins. Brain Lang. 2006;98(1):40–56.

    PubMed  Google Scholar 

  141. Gathercole SE, Baddeley AD. Evaluation of the role of phonological STM in the development of vocabulary in children: a longitudinal study. J Mem Lang. 1989;28(2):200–13.

    Google Scholar 

  142. Gathercole SE, Baddeley AD. Phonological memory deficits in language disordered children: is there a causal connection? J Mem Lang. 1990;29(3):336–60.

    Google Scholar 

  143. Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci. 2003;3(4):255–74.

    PubMed  Google Scholar 

  144. Durisko C, Fiez JA. Functional activation in the cerebellum during working memory and simple speech tasks. Cortex. 2010;46(7):896–906.

    PubMed Central  PubMed  Google Scholar 

  145. Chen SH, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43(9):1227–37.

    PubMed  Google Scholar 

  146. Chang C, Crottaz-Herbette S, Menon V. Temporal dynamics of basal ganglia response and connectivity during verbal working memory. Neuroimage. 2007;34(3):1253–69.

    PubMed  Google Scholar 

  147. Chein JM, Fiez JA. Dissociation of verbal working memory system components using a delayed serial recall task. Cereb Cortex. 2001;11(11):1003–14.

    CAS  PubMed  Google Scholar 

  148. Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17(24):9675–85.

    CAS  PubMed  Google Scholar 

  149. Marvel CL, Desmond JE. From storage to manipulation: how the neural correlates of verbal working memory reflect varying demands on inner speech. Brain Lang. 2012;120(1):42–51.

    PubMed Central  PubMed  Google Scholar 

  150. Hulsmann E, Erb M, Grodd W. From will to action: sequential cerebellar contributions to voluntary movement. Neuroimage. 2003;20(3):1485–92.

    PubMed  Google Scholar 

  151. Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;20(3):271–9.

    PubMed Central  PubMed  Google Scholar 

  152. Chen SH, Desmond JE. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage. 2005;24(2):332–8.

    PubMed  Google Scholar 

  153. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129(Pt 2):306–20.

    PubMed  Google Scholar 

  154. Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6(3):202–13.

    PubMed  Google Scholar 

  155. Ackermann H, Mathiak K, Ivry RB. Temporal organization of “internal speech” as a basis for cerebellar modulation of cognitive functions. Behav Cogn Neurosci Rev. 2004;3(1):14–22.

    PubMed  Google Scholar 

  156. Desmond JE, Chen SH, DeRosa E, Pryor MR, Pfefferbaum A, Sullivan EV. Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. Neuroimage. 2003;19(4):1510–20.

    PubMed  Google Scholar 

  157. Marvel CL, Faulkner ML, Strain EC, Mintzer MZ, Desmond JE. An fMRI investigation of cerebellar function during verbal working memory in methadone maintenance patients. Cerebellum. 2012;11(1):300–10.

    PubMed Central  PubMed  Google Scholar 

  158. Silverman DH, Dy CJ, Castellon SA, Lai J, Pio BS, Abraham L, et al. Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Res Treat. 2007;103(3):303–11.

    CAS  PubMed  Google Scholar 

  159. Sweet LH, Rao SM, Primeau M, Mayer AR, Cohen RA. Functional magnetic resonance imaging of working memory among multiple sclerosis patients. J Neuroimaging. 2004;14(2):150–7.

    PubMed  Google Scholar 

  160. Valera EM, Faraone SV, Biederman J, Poldrack RA, Seidman LJ. Functional neuroanatomy of working memory in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57(5):439–47.

    PubMed  Google Scholar 

  161. Beneventi H, Tonnessen FE, Ersland L, Hugdahl K. Working memory deficit in dyslexia: behavioral and FMRI evidence. Int J Neurosci. 2010;120(1):51–9.

    PubMed  Google Scholar 

  162. Koch K, Wagner G, Schachtzabel C, Schultz C, Sauer H, Schlosser RG. Association between learning capabilities and practice-related activation changes in schizophrenia. Schizophr Bull. 2010;36(3):486–95.

    PubMed  Google Scholar 

  163. White T, Schmidt M, Kim DI, Calhoun VD. Disrupted functional brain connectivity during verbal working memory in children and adolescents with schizophrenia. Cereb Cortex. 2011;21(3):510–8.

    PubMed  Google Scholar 

  164. Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443–54.

    CAS  PubMed  Google Scholar 

  165. Leiner HC, Leiner AL, Dow RS. Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behav Neurosci. 1989;103(5):998–1008.

    CAS  PubMed  Google Scholar 

  166. Imamizu H, Higuchi S, Toda A, Kawato M. Reorganization of brain activity for multiple internal models after short but intensive training. Cortex. 2007;43(3):338–49.

    PubMed  Google Scholar 

  167. Goldman-Rakic PS. Working memory and the mind. Sci Am. 1992;267(3):110–7.

    CAS  PubMed  Google Scholar 

  168. Miyake A. Models of working memory: mechanisms of active maintenance and executive control. Cambridge: Cambridge University Press; 1999.

    Google Scholar 

  169. Fragaszy DM, Cummins-Sebree SE. Relational spatial reasoning by a nonhuman: the example of capuchin monkeys. Behav Cogn Neurosci Rev. 2005;4(4):282–306.

    PubMed  Google Scholar 

  170. Obayashi S, Matsumoto R, Suhara T, Nagai Y, Iriki A, Maeda J. Functional organization of monkey brain for abstract operation. Cortex. 2007;43(3):389–96.

    PubMed  Google Scholar 

  171. Vandervert L. The evolution of language: the cerebro-cerebellar blending of visual–spatial working memory with vocalizations. J Mind Behav. 2011;32(4):317.

    Google Scholar 

  172. Vandervert LR. The evolution of Mandler's conceptual primitives (image-schemas) as neural mechanisms for space–time simulation structures. New Ideas Psychol. 1997;15(2):105–23.

    Google Scholar 

  173. Vandervert L. How working memory and cognitive modeling functions of the cerebellum contribute to discoveries in mathematics. New Ideas Psychol. 2003;21(2):159–75.

    Google Scholar 

  174. Vandervert LR. The appearance of the child prodigy 10,000 years ago: an evolutionary and developmental explanation. J Mind Behav. 2009;30(1):15.

    Google Scholar 

  175. Vandervert LR, Schimpf PH, Liu H. How working memory and the cerebellum collaborate to produce creativity and innovation. Creat Res J. 2007;19(1):1–18.

    Google Scholar 

  176. Imamizu H, Kawato M. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res. 2009;73(4):527–44.

    PubMed  Google Scholar 

  177. Flanagan JR, Nakano E, Imamizu H, Osu R, Yoshioka T, Kawato M. Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. J Neurosci. 1999;19(20):RC34.

    CAS  PubMed  Google Scholar 

  178. Nakano E. Composition and decomposition learning of reaching movements under altered environments: an examination of the multiplicity of internal models. Syst Comput Japan. 2002;33(11):80.

    Google Scholar 

  179. Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M. Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci U S A. 2003;100(9):5461–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature. 2000;403(6766):192–5.

    CAS  PubMed  Google Scholar 

  181. Chomsky N. Cartesian linguistics: a chapter in the history of rationalist thought. New York: Harper & Row; 1966.

    Google Scholar 

  182. Baddeley AD, Andrade J. Working memory and the vividness of imagery. J Exp Psychol Gen. 2000;129(1):126–45.

    CAS  PubMed  Google Scholar 

  183. Tooby J, DeVore I. The reconstruction of hominid behavioral evolution through strategic modeling. In: Kinzey WG, editor. The evolution of human behavior: primate models. Albany, NY: State University of New York Press; 1987. p. 183–237.

    Google Scholar 

  184. Pinker S. Colloquium paper: the cognitive niche: coevolution of intelligence, sociality, and language. Proc Natl Acad Sci U S A. 2010;107 Suppl 2:8993–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Hockett CF. The origin of speech. San Francisco, CA: W.H. Freeman and Co; 1960.

    Google Scholar 

  186. Cisek P, Kalaska JF. Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci. 2010;33:269–98.

    CAS  PubMed  Google Scholar 

  187. Doya K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw. 1999;12(7–8):961–74.

    PubMed  Google Scholar 

  188. Houk JC, Wise SP. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex. 1995;5(2):95–110.

    CAS  PubMed  Google Scholar 

  189. Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey M. Computational grounded cognition: a new alliance between grounded cognition and computational modeling. Frontiers in Psychology 2013;(in press).

  190. Desmurget M, Grafton S. Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci. 2000;4(11):423–31.

    PubMed  Google Scholar 

  191. Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.

    CAS  PubMed  Google Scholar 

  192. D'Angelo E. The cerebellar network: revisiting the critical issues. J Physiol. 2011;589(Pt 14):3421–2.

    PubMed  Google Scholar 

  193. Frens MA, Donchin O. Forward models and state estimation in compensatory eye movements. Front Cell Neurosci. 2009;3:13.

    PubMed Central  PubMed  Google Scholar 

  194. Kawato M. Internal models for motor control and trajectory planning. Curr Opin Neurobiol. 1999;9(6):718–27.

    CAS  PubMed  Google Scholar 

  195. Wolpert DM, Miall RC. Forward models for physiological motor control. Neural Netw. 1996;9(8):1265–79.

    PubMed  Google Scholar 

  196. Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008;185(3):359–81.

    PubMed Central  PubMed  Google Scholar 

  197. Pezzulo G. Grounding procedural and declarative knowledge in sensorimotor anticipation. Mind Lang. 2011;26(1):78–114.

    Google Scholar 

  198. Pezzulo G, Castelfranchi C. Thinking as the control of imagination: a conceptual framework for goal-directed systems. Psychol Res. 2009;73(4):559–77.

    PubMed  Google Scholar 

  199. Pezzulo G, Castelfranchi C. The symbol detachment problem. Cogn Process. 2007;8(2):115–31.

    PubMed  Google Scholar 

  200. Hesslow G. Conscious thought as simulation of behaviour and perception. Trends Cogn Sci. 2002;6(6):242–7.

    PubMed  Google Scholar 

  201. Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage. 2001;14(1):S103–9.

    CAS  PubMed  Google Scholar 

  202. Grush R. The emulation theory of representation: motor control, imagery, and perception. Behav Brain Sci. 2004;27(3):377–96.

    PubMed  Google Scholar 

  203. Friston K. The free-energy principle: a unified brain theory? Nat Rev Neurosci. 2010;11(2):127–38.

    CAS  PubMed  Google Scholar 

  204. Schubotz RI. Prediction of external events with our motor system: towards a new framework. Trends Cogn Sci. 2007;11(5):211–8.

    PubMed  Google Scholar 

  205. Imamizu H, Kawato M. Cerebellar internal models: implications for the dexterous use of tools. Cerebellum. 2010;22:1–11.

    Google Scholar 

  206. Wolpert DM, Doya K, Kawato M. A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci. 2003;358(1431):593–602.

    PubMed  Google Scholar 

  207. Pezzulo G, Dindo H. What should I do next? Using shared representations to solve interaction problems. Exp Brain Res. 2011;211(3–4):613–30.

    PubMed  Google Scholar 

  208. Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266(5184):458–61.

    CAS  PubMed  Google Scholar 

  209. Pezzulo G. An active inference view of cognitive control. Front Psychol. 2012;3:478.

    PubMed Central  PubMed  Google Scholar 

  210. Barsalou LW. Grounded cognition. Annu Rev Psychol. 2008;59:617–45.

    PubMed  Google Scholar 

  211. Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey MJ. The mechanics of embodiment: a dialog on embodiment and computational modeling. Front Psychol. 2011;2:5.

    PubMed Central  PubMed  Google Scholar 

  212. Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey MJ. Computational grounded cognition: a new alliance between grounded cognition and computational modeling. Front Psychol. 2012;3:612.

    PubMed Central  PubMed  Google Scholar 

  213. Moulton ST, Kosslyn SM. Imagining predictions: mental imagery as mental emulation. Philos Trans R Soc Lond B Biol Sci. 2009;364(1521):1273–80.

    PubMed  Google Scholar 

  214. Barkley RA. The executive functions and self-regulation: an evolutionary neuropsychological perspective. Neuropsychol Rev. 2001;11(1):1–29.

    CAS  PubMed  Google Scholar 

  215. Glenberg AM. What memory is for. Behav Brain Sci. 1997;20(1):1–19.

    CAS  PubMed  Google Scholar 

  216. Rosenbaum DA, Carlson RA, Gilmore RO. Acquisition of intellectual and perceptual-motor skills. Annu Rev Psychol. 2001;52:453–70.

    CAS  PubMed  Google Scholar 

  217. Piaget J. The construction of reality in the child. New York: Basic Books; 1954.

    Google Scholar 

  218. Pezzulo G, Barca L, Bocconi AL, Borghi AM. When affordances climb into your mind: advantages of motor simulation in a memory task performed by novice and expert rock climbers. Brain Cogn. 2010;73(1):68–73.

    PubMed  Google Scholar 

  219. Kawato M, Furukawa K, Suzuki R. A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern. 1987;57(3):169–85.

    CAS  PubMed  Google Scholar 

  220. Wolpert DM, Ghahramani Z, Jordan MI. An internal model for sensorimotor integration. In: Science-New York Then Washington. Washington, DC: American Association for the Advancement of Science;1995. p. 1880

  221. Flanagan JR, Wing AM. The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci. 1997;17(4):1519–28.

    CAS  PubMed  Google Scholar 

  222. Mehta B, Schaal S. Forward models in visuomotor control. J Neurophysiol. 2002;88(2):942–53.

    PubMed  Google Scholar 

  223. Higuchi S, Imamizu H, Kawato M. Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex. 2007;43(3):350–8.

    PubMed  Google Scholar 

  224. Imamizu H, Kuroda T, Yoshioka T, Kawato M. Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. J Neurosci. 2004;24(5):1173–81.

    CAS  PubMed  Google Scholar 

  225. Imamizu H, Kawato M. Neural correlates of predictive and postdictive switching mechanisms for internal models. J Neurosci. 2008;28(42):10751.

    CAS  PubMed  Google Scholar 

  226. Iriki A. The neural origins and implications of imitation, mirror neurons and tool use. Curr Opin Neurobiol. 2006;16(6):660–7.

    CAS  PubMed  Google Scholar 

  227. Johnson-Frey SH. The neural bases of complex tool use in humans. Trends Cogn Sci. 2004;8(2):71–8.

    PubMed  Google Scholar 

  228. Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47(1):59–80.

    PubMed  Google Scholar 

  229. Rosenblatt F. Principles of neurodynamics. Washington: Spartan Books; 1962.

    Google Scholar 

  230. Fujita M. Adaptive filter model of the cerebellum. Biol Cybern. 1982;45(3):195–206.

    CAS  PubMed  Google Scholar 

  231. Dean P, Porrill J, Ekerot CF, Jorntell H. The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci. 2010;11(1):30–43.

    CAS  PubMed  Google Scholar 

  232. Barlow JS. The cerebellum and adaptive control. Cambridge, UK: Cambridge University Press; 2002.

    Google Scholar 

  233. Zaknich A. Principles of adaptive filters and self-learning systems. 2005. http://site.ebrary.com/id/10228674

  234. Hebb DO. The organization of behavior; a neuropsychological theory. New York: Wiley; 1949.

    Google Scholar 

  235. Ito M. Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.

    PubMed  Google Scholar 

  236. Craik KJW. The nature of explanation. Cambridge: University Press; 1952.

    Google Scholar 

  237. Johnson-Laird PN. Mental models : towards a cognitive science of language, inference, and consciousness. Cambridge, Mass: Harvard University Press; 1983.

    Google Scholar 

  238. Piaget J. The psychology of intelligence. London: Routledge & Paul; 1950.

    Google Scholar 

  239. Ito M. The cerebellum: brain for an implicit self. Upper Saddle River, NJ: Ft Press; 2011.

    Google Scholar 

  240. McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955. AI Mag. 2006;27(4):12.

    Google Scholar 

  241. Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain. 1996;119(Pt 4):1199–211.

    PubMed  Google Scholar 

  242. Koziol LF, Budding DE, Chidekel D. From movement to thought: executive function, embodied cognition, and the cerebellum. Cerebellum. 2012;11(2):505–25.

    PubMed  Google Scholar 

  243. Penhune VB, Steele CJ. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav Brain Res. 2012;226(2):579–91.

    PubMed  Google Scholar 

  244. Jirenhed DA, Bengtsson F, Hesslow G. Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci. 2007;27(10):2493–502.

    CAS  PubMed  Google Scholar 

  245. Hirata Y, Lockard JM, Highstein SM. Capacity of vertical VOR adaptation in squirrel monkey. J Neurophysiol. 2002;88(6):3194–207.

    CAS  PubMed  Google Scholar 

  246. Kramer PD, Shelhamer M, Zee DS. Short-term adaptation of the phase of the vestibulo-ocular reflex (VOR) in normal human subjects. Exp Brain Res. 1995;106(2):318–26.

    CAS  PubMed  Google Scholar 

  247. Gluck MA, Reifsnider ES, Thompson RF. Adaptive signal processing and the cerebellum: models of classical conditioning and VOR adaptation. In: Gluck MA, Rumelhart DE, editors. Neuroscience and connectionist theory. Hillsdale, NJ: Lawrence Erlbaum; 1990. p. 131–86.

    Google Scholar 

  248. Mauk MD, Donegan NH. A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learn Mem. 1997;4(1):130–58.

    CAS  PubMed  Google Scholar 

  249. Yamazaki T, Nagao S. A computational mechanism for unified gain and timing control in the cerebellum. PLoS One. 2012;7(3):e33319.

    CAS  PubMed Central  PubMed  Google Scholar 

  250. Smaers JB, Steele J, Zilles K. Modeling the evolution of cortico cerebellar systems in primates. Ann NY Acad Sci. 2011;1225(1):176–90.

    PubMed  Google Scholar 

  251. Njiokiktjien C. Developmental dyspraxias: assessment and differential diagnosis. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge, France: John Libbey Eurotext; 2010. p. 157–86.

    Google Scholar 

  252. Galea JM, Vazquez A, Pasricha N, Orban de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cerebral Cortex. 2011;21:1761–70.

    Google Scholar 

  253. Kalashnikova LA, Zueva YV, Pugacheva OV, Korsakova NK. Cognitive impairments in cerebellar infarcts. Neurosci Behav Physiol. 2005;35(8):773–9.

    CAS  PubMed  Google Scholar 

  254. Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry. 2008;64(2):81–8.

    PubMed Central  PubMed  Google Scholar 

  255. Allen G, Courchesne E. Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism. Am J Psychiatry. 2003;160(2):262–73.

    PubMed  Google Scholar 

  256. Hopyan T, Laughlin S, Dennis M. Emotions and their cognitive control in children with cerebellar tumors. J Int Neuropsychol Soc. 2010;16(6):1027–38.

    PubMed  Google Scholar 

  257. Wadsworth HM, Kana RK. Brain mechanisms of perceiving tools and imagining tool use acts: a functional MRI study. Neuropsychologia. 2011;49:1863–9.

    Google Scholar 

  258. Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, et al. Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol. 2009;5(5):e1000381.

    PubMed Central  PubMed  Google Scholar 

  259. Poldrack RA, Mumford JA, Schonberg T, Kalar D, Barman B, Yarkoni T. Discovering relations between mind, brain, and mental disorders using topic mapping. PLoS Comput Biol. 2012;8(10):e1002707.

    CAS  PubMed Central  PubMed  Google Scholar 

  260. Dobromyslin VI, Salat DH, Fortier CB, Leritz EC, Beckmann CF, Milberg WP, et al. Distinct functional networks within the cerebellum and their relation to cortical systems assessed with independent component analysis. Neuroimage. 2012;60(4):2073–85.

    PubMed Central  PubMed  Google Scholar 

  261. Wang D, Buckner RL, Liu H. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J Neurophysiol. 2013;109(1):46–57.

    CAS  PubMed  Google Scholar 

  262. Stoodley CJ, Valera EM, Schmahmann JD. An fMRI case study of functional topography in the human cerebellum. Behav Neurol. 2010;23:65–79.

    PubMed Central  PubMed  Google Scholar 

  263. Schmahmann JD, Doyon J, Toga A, Petrides M, Evans A. MRI atlas of the human cerebellum. San Diego: Academic. 2000

Download references

Conflict of Interest Statement

The authors have no conflicts of interest associated with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deborah Budding or Daria Riva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koziol, L.F., Budding, D., Andreasen, N. et al. Consensus Paper: The Cerebellum's Role in Movement and Cognition. Cerebellum 13, 151–177 (2014). https://doi.org/10.1007/s12311-013-0511-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0511-x

Keywords

Navigation