Skip to main content
Log in

Contribution of Postsynaptic GluD2 to Presynaptic R-type Ca2+ Channel Function, Glutamate Release and Long-term Potentiation at Parallel Fiber to Purkinje Cell Synapses

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Glutamate-receptor-like molecule delta2 (GluD2) is selectively expressed on the postsynaptic membranes at parallel fiber to Purkinje cell (PF-PC) synapses in the cerebellum. GluD2 plays critical roles not only in postsynaptic long-term depression but also in the induction of presynaptic differentiation through trans-synaptic interaction with neurexin. However, how GluD2 influences the presynaptic function remains unknown. Here, effects of the deletion of postsynaptic GluD2 on the presynaptic properties were studied focusing on the paired pulse ratio (PPR) of two consecutive EPSC amplitudes, which was larger in GluD2 knockout mice. The PPR difference remained even if saturation of glutamate binding to postsynaptic receptors was suppressed, confirming the presynaptic difference between the genotypes. We then explored the possibility that presynaptic voltage-gated Ca2+ channels (VGCCs) are affected in GluD2 knockout mice. Application of selective blockers for specific VGCCs indicated that R-type but not P/Q- or N-type VGCC, was affected in the mutant mice. Furthermore, presynaptic long-term potentiation (LTP) at PF-PC synapses, which requires R-type VGCC, was impaired in GluD2 knockout mice. These results suggest that GluD2 deletion impairs presynaptic R-type VGCC, resulting in decreased release of synaptic vesicles, and also in the impairment of presynaptic LTP at PF-PC synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol. 2006;78:272–303.

    Article  PubMed  Google Scholar 

  2. Takayama C, Nakagawa S, Watanabe M, Mishina M, Inoue Y. Light- and electron-microscopic localization of the glutamate receptor channel δ2 subunit in the mouse Purkinje cell. Neurosci Lett. 1995;188:89–92.

    Article  PubMed  CAS  Google Scholar 

  3. Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M. Selective expression of the glutamate receptor channel δ2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun. 1993;197:1267–76.

    Article  PubMed  CAS  Google Scholar 

  4. Lomeli H, Sprengel R, Laurie DJ, Köhr G, Herb A, Seeburg PH, et al. The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett. 1993;315:318–22.

    Article  PubMed  CAS  Google Scholar 

  5. Schmid SM, Kott S, Sager C, Huelsken T, Hollmann M. The glutamate receptor subunit delta2 is capable of gating its intrinsic ion channel as revealed by ligand binding domain transplantation. Proc Natl Acad Sci U S A. 2009;106:10320–5.

    Article  PubMed  CAS  Google Scholar 

  6. Mandolesi G, Cesa R, Autuori E, Strata P. An orphan ionotropic glutamate receptor: the δ2 subunit. Neuroscience. 2009;158:67–77.

    Article  PubMed  CAS  Google Scholar 

  7. Yuzaki M. New (but old) molecules regulating synapse integrity and plasticity: Cbln1 and the δ2 glutamate receptor. Neuroscience. 2009;162:633–43.

    Article  PubMed  CAS  Google Scholar 

  8. Hirano T. Glutamate-receptor-like molecule GluRδ2 involved in synapse formation at parallel fiber-Purkinje neuron synapses. Cerebellum. 2012;11:71–7.

    Article  PubMed  CAS  Google Scholar 

  9. Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, et al. Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluRδ2 mutant mice. Cell. 1995;81:245–52.

    Article  PubMed  CAS  Google Scholar 

  10. Yawata S, Tsuchida H, Kengaku M, Hirano T. Membrane-proximal region of glutamate receptor δ2 subunit is critical for long-term depression and interaction with protein interacting with C kinase 1 in a cerebellar Purkinje neuron. J Neurosci. 2006;26:3626–33.

    Article  PubMed  CAS  Google Scholar 

  11. Kohda K, Kakegawa W, Matsuda S, Nakagami R, Kakiya N, Yuzaki M. The extreme C-terminus of GluRδ2 is essential for induction of long-term depression in cerebellar slices. Eur J Neurosci. 2007;25:1357–62.

    Article  PubMed  Google Scholar 

  12. Uemura T, Kakizawa S, Yamasaki M, Sakimura K, Watanabe M, Iino M, et al. Regulation of long-term depression and climbing fiber territory by glutamate receptor δ2 at parallel fiber synapses through its C-terminal domain in cerebellar Purkinje cells. J Neurosci. 2007;27:12096–108.

    Article  PubMed  CAS  Google Scholar 

  13. Torashima T, Iizuka A, Horiuchi H, Mitsumura K, Yamasaki M, Koyama C, et al. Rescue of abnormal phenotypes in δ2 glutamate receptor-deficient mice by the extracellular N-terminal and intracellular C-terminal domains of the δ2 glutamate receptor. Eur J Neurosci. 2009;30:355–65.

    Article  PubMed  Google Scholar 

  14. Kuroyanagi T, Yokoyama M, Hirano T. Postsynaptic glutamate receptor δ family contributes to presynaptic terminal differentiation and establishment of synaptic transmission. Proc Natl Acad Sci U S A. 2009;106:4912–6.

    Article  PubMed  CAS  Google Scholar 

  15. Uemura T, Lee SJ, Yasumura M, Takeuchi T, Yoshida T, Ra M, et al. Trans-synaptic interaction of GluRδ2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell. 2010;141:1068–79.

    Article  PubMed  CAS  Google Scholar 

  16. Matsuda K, Miura E, Miyazaki T, Kakegawa W, Emi K, Narumi S, et al. Cbln1 is a ligand for an orphan glutamate receptor δ2, a bidirectional synapse organizer. Science. 2010;328:363–8.

    Article  PubMed  CAS  Google Scholar 

  17. Kuroyanagi T, Hirano T. Flap loop of GluD2 binds to Cbln1 and induces presynaptic differentiation. Biochem Biophys Res Commun. 2010;398:537–41.

    Article  PubMed  CAS  Google Scholar 

  18. Matsuda K, Yuzaki M. Cbln family proteins promote synapse formation by regulating distinct neurexin signaling pathways in various brain regions. Eur J Neurosci. 2011;33:1447–61.

    Article  PubMed  Google Scholar 

  19. Debanne D, Guérineau NC, Gähwiler BH, Thompson SM. Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. J Physiol. 1996;491:163–76.

    PubMed  CAS  Google Scholar 

  20. Hashimoto K, Kano M. Presynaptic origin of paired-pulse depression at climbing fibre-Purkinje cell synapses in the rat cerebellum. J Physiol. 1998;506:391–405.

    Article  PubMed  CAS  Google Scholar 

  21. Wadiche JI, Jahr CE. Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron. 2001;32:301–13.

    Article  PubMed  CAS  Google Scholar 

  22. Foster KA, Crowley JJ, Regehr WG. The influence of multivesicular release and postsynaptic receptor saturation on transmission at granule cell to Purkinje cell synapses. J Neurosci. 2005;25:11655–65.

    Article  PubMed  CAS  Google Scholar 

  23. Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer RE, Gottmann K, et al. α-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature. 2003;423:939–48.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang W, Rohlmann A, Sargsyan V, Aramuni G, Hammer RE, Südhof TC, et al. Extracellular domains of α-neurexins participate in regulating synaptic transmission by selectively affecting N- and P/Q-type Ca2+ channels. J Neurosci. 2005;25:4330–42.

    Article  PubMed  CAS  Google Scholar 

  25. Mintz IM, Sabatini BL, Regehr WG. Calcium control of transmitter release at a cerebellar synapse. Neuron. 1995;15:675–88.

    Article  PubMed  CAS  Google Scholar 

  26. Myoga MH, Regehr WG. Calcium microdomains near R-type calcium channels control the induction of presynaptic long-term potentiation at parallel fiber to Purkinje cell synapses. J Neurosci. 2011;31:5235–43.

    Article  PubMed  CAS  Google Scholar 

  27. Coesmans M, Weber JT, De Zeeuw CI, Hansel C. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron. 2004;44:691–700.

    Article  PubMed  CAS  Google Scholar 

  28. Wall MJ, Dale N. Auto-inhibition of rat parallel fibre-Purkinje cell synapses by activity-dependent adenosine release. J Physiol. 2007;581:553–65.

    Article  PubMed  Google Scholar 

  29. Dittman JS, Regehr WG. Contributions of calcium-dependent and calcium-independent mechanisms to presynaptic inhibition at a cerebellar synapse. J Neurosci. 1996;16:1623–33.

    PubMed  CAS  Google Scholar 

  30. Kreitzer AC, Regehr WG. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron. 2001;29:717–27.

    Article  PubMed  CAS  Google Scholar 

  31. Hirano T. Differential pre- and postsynaptic mechanisms for synaptic potentiation and depression between a granule cell and a Purkinje cell in rat cerebellar culture. Synapse. 1991;7:321–3.

    Article  PubMed  CAS  Google Scholar 

  32. Qiu DL, Knöpfel T. An NMDA receptor/nitric oxide cascade in presynaptic parallel fiber-Purkinje neuron long-term potentiation. J Neurosci. 2007;27:3408–15.

    Article  PubMed  CAS  Google Scholar 

  33. Valera AM, Doussau F, Poulain B, Barbour B, Isope P. Adaptation of granule cell to Purkinje cell synapses to high-frequency transmission. J Neurosci. 2012;32:3267–80.

    Article  PubMed  CAS  Google Scholar 

  34. Yamasaki M, Miyazaki T, Azechi H, Abe M, Natsume R, Hagiwara T, et al. Glutamate receptor δ2 is essential for input pathway-dependent regulation of synaptic AMPAR contents in cerebellar Purkinje cells. J Neurosci. 2011;31:3362–74.

    Article  PubMed  CAS  Google Scholar 

  35. Augustine GJ. How does calcium trigger neurotransmitter release? Curr Opin Neurobiol. 2001;11:320–6.

    Article  PubMed  CAS  Google Scholar 

  36. Kochubey O, Lou X, Schneggenburger R. Regulation of transmitter release by Ca2+ and synaptotagmin: insights from a large CNS synapse. Trends Neurosci. 2011;34:237–46.

    Article  PubMed  CAS  Google Scholar 

  37. Brown SP, Safo PK, Regehr WG. Endocannabinoids inhibit transmission at granule cell to Purkinje cell synapses by modulating three types of presynaptic calcium channels. J Neurosci. 2004;24:5623–31.

    Article  PubMed  CAS  Google Scholar 

  38. Salin PA, Malenka RC, Nicoll RA. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron. 1996;16:797–803.

    Article  PubMed  CAS  Google Scholar 

  39. Chen C, Regehr WG. The mechanism of cAMP-mediated enhancement at a cerebellar synapse. J Neurosci. 1997;17:8687–94.

    PubMed  CAS  Google Scholar 

  40. Hirano T, Kasono K, Araki K, Shinozuka K, Mishina M. Involvement of the glutamate receptor δ2 subunit in the long-term depression of glutamate responsiveness in cultured rat Purkinje cells. Neurosci Lett. 1994;182:172–6.

    Article  PubMed  CAS  Google Scholar 

  41. Boyden ES, Katoh A, Raymond JL. Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci. 2004;27:581–609.

    Article  PubMed  CAS  Google Scholar 

  42. Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev. 2001;81:1143–95.

    PubMed  CAS  Google Scholar 

  43. Linden DJ. The expression of cerebellar LTD in culture is not associated with changes in AMPA-receptor kinetics, agonist affinity, or unitary conductance. Proc Natl Acad Sci U S A. 2001;98:14066–71.

    Article  PubMed  CAS  Google Scholar 

  44. Atluri PP, Regehr WG. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J Neurosci. 1996;16:5661–71.

    PubMed  CAS  Google Scholar 

  45. Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol. 2002;64:355–405.

    Article  PubMed  CAS  Google Scholar 

  46. Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol. 2000;16:521–55.

    Article  PubMed  CAS  Google Scholar 

  47. Tedford HW, Zamponi GW. Direct G protein modulation of Cav2 calcium channels. Pharmacol Rev. 2006;58:837–62.

    Article  PubMed  CAS  Google Scholar 

  48. Li L, Bischofberger J, Jonas P. Differential gating and recruitment of P/Q-, N-, and R-type Ca2+ channels in hippocampal mossy fiber boutons. J Neurosci. 2007;27:13420–9.

    Article  PubMed  CAS  Google Scholar 

  49. Cao YQ, Piedras-Rentería ES, Smith GB, Chen G, Harata NC, Tsien RW. Presynaptic Ca2+ channels compete for channel type-preferring slots in altered neurotransmission arising from Ca2+ channelopathy. Neuron. 2004;43:387–400.

    Article  PubMed  CAS  Google Scholar 

  50. Cao YQ, Tsien RW. Different relationship of N- and P/Q-type Ca2+ channels to channel-interacting slots in controlling neurotransmission at cultured hippocampal synapses. J Neurosci. 2010;30:4536–46.

    Article  PubMed  CAS  Google Scholar 

  51. Miyawaki H, Hirano T. Different correlations among physiological and morphological properties at single glutamatergic synapses in the rat hippocampus and the cerebellum. Synapse. 2011;65:412–23.

    Article  PubMed  CAS  Google Scholar 

  52. Delaney AJ, Jahr CE. Kainate receptors differentially regulate release at two parallel fiber synapses. Neuron. 2002;36:475–82.

    Article  PubMed  CAS  Google Scholar 

  53. Bao J, Reim K, Sakaba T. Target-dependent feedforward inhibition mediated by short-term synaptic plasticity in the cerebellum. J Neurosci. 2010;30:8171–9.

    Article  PubMed  CAS  Google Scholar 

  54. Craig AM, Kang Y. Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol. 2007;17:43–52.

    Article  PubMed  CAS  Google Scholar 

  55. Südhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008;455:903–11.

    Article  PubMed  Google Scholar 

  56. Linhoff MW, Laurén J, Cassidy RM, Dobie FA, Takahashi H, Nygaard HB, et al. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron. 2009;61:734–49.

    Article  PubMed  CAS  Google Scholar 

  57. Ko J, Soler-Llavina GJ, Fuccillo MV, Malenka RC, Südhof TC. Neuroligins/LRRTMs prevent activity- and Ca2+/calmodulin-dependent synapse elimination in cultured neurons. J Cell Biol. 2011;194:323–34.

    Article  PubMed  CAS  Google Scholar 

  58. Chubykin AA, Atasoy D, Etherton MR, Brose N, Kavalali ET, Gibson JR, et al. Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron. 2007;54:919–31.

    Article  PubMed  CAS  Google Scholar 

  59. Comoletti D, Flynn R, Jennings LL, Chubykin A, Matsumura T, Hasegawa H, et al. Characterization of the interaction of a recombinant soluble neuroligin-1 with neurexin-1β. J Biol Chem. 2003;278:50497–505.

    Article  PubMed  CAS  Google Scholar 

  60. Koehnke J, Jin X, Trbovic N, Katsamba PS, Brasch J, Ahlsen G, et al. Crystal structures of β-neurexin 1 and β-neurexin 2 ectodomains and dynamics of splice insertion sequence 4. Structure. 2008;16:410–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Y. Tagawa, G. Ohtsuki, and E. Nakajima for comments on the manuscript. This work was supported by a grant-in-aid for scientific research and by a grant for excellent graduate schools from the Ministry of Education, Culture, Sports, Science and Technology in Japan, Takeda Science Foundation, and also by Global COE program A06 of Kyoto University.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoo Hirano.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Effects of DGG on the EPSC amplitude. a, b The decrease in EPSC amplitude caused by application of 2 mM DGG in wild-type (“+/+” n = 5; a) and GluD2 knockout (“−/−” n = 5; b) mice (JPEG 9 kb)

High-resolution image (TIFF 99 kb)

Supplemental Fig. 2

The time courses of EPSC amplitude change when [Ca2+]o was increased in wild-type (“+/+” open circles, n = 5) and in knockout (“−/−” filled circles, n = 5) mice (JPEG 12 kb)

High-resolution image (TIFF 79 kb)

Supplemental Fig. 3

PPR with various intervals in the presence of both Ni2+ and DGG in wild-type (“+/+” open circles, n = 9) and in knockout (“−/−” filled circles, n = 9) mice (JPEG 7 kb)

High-resolution image (TIFF 51 kb)

Supplemental Fig. 4

Effects of a cocktail of antagonists for A1R, GABABR, and CB1R. Application of the cocktail increased the EPSC amplitude both in wild-type (“+/+” open circles, n = 5) and in knockout (“−/−” filled circles, n = 5) mice (JPEG 14 kb)

High-resolution image (TIFF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, M., Kawaguchi, Sy. & Hirano, T. Contribution of Postsynaptic GluD2 to Presynaptic R-type Ca2+ Channel Function, Glutamate Release and Long-term Potentiation at Parallel Fiber to Purkinje Cell Synapses. Cerebellum 12, 657–666 (2013). https://doi.org/10.1007/s12311-013-0474-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0474-y

Keywords

Navigation