Skip to main content
Log in

Principal Component and Cluster Analysis of Morphological Variables Reveals Multiple Discrete Sub-phenotypes in Weaver Mouse Mutants

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The present study evaluates the usefulness of the principal component analysis-based cluster analysis in the categorization of several sub-phenotypes in the weaver mutant by using several morphological parameters from the cerebellar cortex of control, heterozygous (+/wv) and homozygous (wv/wv) weaver mice. The quantified parameters were length of the cerebellar cortex, area of the external granular layer, area of the molecular layer, number of the external granular layer cells (EGL), and number of Purkinje cells (PCs). The analysis indicated that at postnatal day 8, the genotype +/wv presented three sub-phenotypes tagged as +/wv 0, +/wv 1 and +/wv 2, whereas two sub-phenotypes designated as wv 0/wv 1 and wv 0/wv 2 were identified in the genotype wv/wv. The number of PCs for the genotype +/wv and the number of EGL cells for the genotype wv/wv were the variables that discriminated the best among sub-phenotypes. Each one of the sub-phenotypes showed specific abnormalities in the cytoarchitecture of the cerebellar cortex as well as in the foliar pattern. In particular, the wv 0/wv 1 and wv 0/wv 2 sub-phenotypes had the most altered cytoarchitectonics, followed by the +/wv 2 sub-phenotype and then by the +/wv 1 one. The sub-phenotype +/wv 0 was the less affected one. Apart from reporting for the first time the coexistence of several sub-phenotypes in the weaver mutant, our approach provides a new statistical tool that can be used to assess cerebellar morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Altman J, Bayer SA. Development of the cerebellar system. In: Relation to its evolution, structure and functions. Boca Raton: CRC Press; 1997.

    Google Scholar 

  2. Sultan F, Glickstein M. The cerebellum: comparative and animal studies. Cerebellum. 2007;6(3):168–76.

    Article  PubMed  Google Scholar 

  3. Armstrong DM, Schild RF. An investigation of the cerebellar corticonuclear projections in the rat using an autoradiographic tracing method. II. Projections from the hemisphere. Brain Res. 1978;141(2):235–49.

    Article  PubMed  CAS  Google Scholar 

  4. Cholley B, Wassef M, Arsenio-Nunes L, Brehier A, Sotelo C. Proximal trajectory of the brachium conjunctivum in rat fetuses and its early association with the parabrachial nucleus. A study combining in vitro HRP anterograde axonal tracing and immunocytochemistry. Brain Res Dev Brain Res. 1989;45(2):185–202.

    Article  PubMed  CAS  Google Scholar 

  5. Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJ. Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res. 2000;124:141–72.

    Article  PubMed  CAS  Google Scholar 

  6. Schilling K, Oberdick J, Rossi F, Baader SL. Besides Purkinje cells and granule neurons: an appraisal of the cell biology of the interneurons of the cerebellar cortex. Histochem Cell Biol. 2008;130(4):601–15.

    Article  PubMed  CAS  Google Scholar 

  7. Chedotal A. Should I, stay or should I go? Becoming a granule cell. Trends Neurosci. 2010;33(4):163–72.

    Article  PubMed  CAS  Google Scholar 

  8. Sotelo C, Changeux JP. Bergmann fibers and granular cell migration in the cerebellum of homozygous weaver mutant mouse. Brain Res. 1974;77(3):484–91.

    Article  PubMed  CAS  Google Scholar 

  9. Sato T, Joyner AL, Nakamura H. How does Fgf signaling from the isthmic organizer induce midbrain and cerebellum development? Dev Growth Differ. 2004;46(6):487–94.

    Article  PubMed  CAS  Google Scholar 

  10. Nakamura H, Sato T, Suzuki-Hirano A. Isthmus organizer for mesencephalon and metencephalon. Dev Growth Differ. 2008;50 Suppl 1:S113–8.

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki-Hirano A, Harada H, Sato T, Nakamura H. Activation of Ras-ERK pathway by Fgf8 and its downregulation by Sprouty2 for the isthmus organizing activity. Dev Biol. 2010;337(2):284–93.

    Article  PubMed  CAS  Google Scholar 

  12. Leto K, Carletti B, Williams IM, Magrassi L, Rossi F. Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci. 2006;26(45):11682–94.

    Article  PubMed  CAS  Google Scholar 

  13. Carletti B, Rossi F. Neurogenesis in the cerebellum. Neuroscientist. 2008;14(1):91–100.

    Article  PubMed  Google Scholar 

  14. Reeves RH, Crowley MR, Lorenzon N, Pavan WJ, Smeyne RJ, Goldowitz D. The mouse neurological mutant weaver maps within the region of chromosome 16 that is homologous to human chromosome 21. Genomics. 1989;5(3):522–6.

    Article  PubMed  CAS  Google Scholar 

  15. Mjaatvedt AE, Citron MP, Reeves RH. High-resolution mapping of D16led-1, Gart, Gas-4, Cbr, Pcp-4, and Erg on distal mouse chromosome 16. Genomics. 1993;17(2):382–6.

    Article  PubMed  CAS  Google Scholar 

  16. Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson AS. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet. 1995;11(2):126–9.

    Article  PubMed  CAS  Google Scholar 

  17. Tolwani RJ, Jakowec MW, Petzinger GM, Green S, Waggie K. Experimental models of Parkinson's disease: insights from many models. Lab Anim Sci. 1999;49(4):363–71.

    PubMed  CAS  Google Scholar 

  18. Triarhou LC. Biology and pathology of the Weaver mutant mouse. Adv Exp Med Biol. 2002;517:15–42.

    Article  PubMed  Google Scholar 

  19. Grusser-Cornehls U, Baurle J. Mutant mice as a model for cerebellar ataxia. Prog Neurobiol. 2001;63(5):489–540.

    Article  PubMed  CAS  Google Scholar 

  20. Lalonde R, Strazielle C. Spontaneous and induced mouse mutations with cerebellar dysfunctions: behavior and neurochemistry. Brain Res. 2007;1140:51–74.

    Article  PubMed  CAS  Google Scholar 

  21. Triarhou LC, Norton J, Ghetti B. Mesencephalic dopamine cell deficit involves areas A8, A9 and A10 in weaver mutant mice. Exp Brain Res. 1988;70(2):256–65.

    Article  PubMed  CAS  Google Scholar 

  22. Cavalcanti-Kwiatkoski R, Raisman-Vozari R, Ginestet L, Del Bel E. Altered expression of neuronal nitric oxide synthase in weaver mutant mice. Brain Res. 2010;1326:40–50.

    Article  PubMed  CAS  Google Scholar 

  23. Rezai Z, Yoon CH. Abnormal rate of granule cell migration in the cerebellum of "Weaver" mutant mice. Dev Biol. 1972;29(1):17–26.

    Article  PubMed  CAS  Google Scholar 

  24. Rakic P, Sidman RL. Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol. 1973;152(2):133–61.

    Article  PubMed  CAS  Google Scholar 

  25. Rakic P, Sidman RL. Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J Comp Neurol. 1973;152(2):103–32.

    Article  PubMed  CAS  Google Scholar 

  26. Blatt GJ, Eisenman LM. A qualitative and quantitative light microscopic study of the inferior olivary complex of normal, reeler, and weaver mutant mice. J Comp Neurol. 1985;232(1):117–28.

    Article  PubMed  CAS  Google Scholar 

  27. Herrup K, Trenkner E. Regional differences in cytoarchitecture of the weaver cerebellum suggest a new model for weaver gene action. Neuroscience. 1987;23(3):871–85.

    Article  PubMed  CAS  Google Scholar 

  28. Maricich SM, Soha J, Trenkner E, Herrup K. Failed cell migration and death of purkinje cells and deep nuclear neurons in the weaver cerebellum. J Neurosci. 1997;17(10):3675–83.

    PubMed  CAS  Google Scholar 

  29. Marti J, Wills KV, Ghetti B, Bayer SA. Evidence that the loss of Purkinje cells and deep cerebellar nuclei neurons in homozygous weaver is not related to neurogenetic patterns. Int J Dev Neurosci. 2001;19(6):599–610.

    Article  PubMed  CAS  Google Scholar 

  30. Won L, Ghetti B, Heller B, Heller A. In vitro evidence that the reduction in mesencephalic dopaminergic neurons in the weaver heterozygote is not due to a failure in target cell interaction. Exp Brain Res. 1997;115(1):174–9.

    Article  PubMed  CAS  Google Scholar 

  31. Hess EJ. Identification of the weaver mouse mutation: the end of the beginning. Neuron. 1996;16(6):1073–6.

    Article  PubMed  CAS  Google Scholar 

  32. Eisenman LM, Gallagher E, Hawkes R. Regionalization defects in the weaver mouse cerebellum. J Comp Neurol. 1998;394(4):431–44.

    Article  PubMed  CAS  Google Scholar 

  33. Goldowitz D, Mullen RJ. Granule cell as a site of gene action in the weaver mouse cerebellum: evidence from heterozygous mutant chimeras. J Neurosci. 1982;2(10):1474–85.

    PubMed  CAS  Google Scholar 

  34. Armstrong C, Hawkes R. Selective Purkinje cell ectopia in the cerebellum of the weaver mouse. J Comp Neurol. 2001;439(2):151–61.

    Article  PubMed  CAS  Google Scholar 

  35. Ward Jr JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963;58(301):236–44.

    Article  Google Scholar 

  36. Kshirsagar AM. Multivariate analysis. New York: Dekker; 1972.

    Google Scholar 

  37. Anderberg MR. Cluster analysis for applications. New York: Academic Press; 1973.

    Google Scholar 

  38. Benavides-Piccione R, Hamzei-Sichani F, Ballesteros-Yanez I, DeFelipe J, Yuste R. Dendritic size of pyramidal neurons differs among mouse cortical regions. Cereb Cortex. 2006;16(7):990–1001.

    Article  PubMed  Google Scholar 

  39. Marti J, Carmen Santa-Cruz M, Bayer SA, Hervas JP. The weaver gene expression affects neuronal generation patterns depending on age and encephalic region. Neurosci Lett. 2006;396(3):202–6.

    Article  PubMed  CAS  Google Scholar 

  40. Wei J, Hodes ME, Wang Y, Feng Y, Ghetti B, Dlouhy SR. Direct cDNA selection with DNA microdissected from mouse chromosome 16: isolation of novel clones and construction of a partial transcription map of the C3-C4 region. Genome Res. 1996;6(8):678–87.

    Article  PubMed  CAS  Google Scholar 

  41. Lange W (1982) Regional differences in the cytoarchitecture of the cerebellar cortex. Palay SL, Chan-Palay V (eds). The cerebellum: new vistas. Springer: Berlin. pp 93–107

  42. Marti J, Santa-Cruz MC, Bayer SA, Ghetti B, Hervas JP. Purkinje cell age-distribution in fissures and in foliar crowns: a comparative study in the weaver cerebellum. Brain Struct Funct. 2007;212(3–4):347–57.

    Article  PubMed  Google Scholar 

  43. Sarle WS. Cubic clustering criterion. Technical report, Cary, NC: SAS Institute Inc 1983;A-108.

  44. Hartigan JA. Clustering algorithms. New York: Wiley; 1975.

    Google Scholar 

  45. Inouye M, Murakami U. Temporal and spatial patterns of Purkinje cell formation in the mouse cerebellum. J Comp Neurol. 1980;194(3):499–503.

    Article  PubMed  CAS  Google Scholar 

  46. Smeyne RJ, Goldowitz D. Development and death of external granular layer cells in the weaver mouse cerebellum: a quantitative study. J Neurosci. 1989;9(5):1608–20.

    PubMed  CAS  Google Scholar 

  47. Simon JR, Ghetti B. The weaver mutant mouse as a model of nigrostriatal dysfunction. Mol Neurobiol. 1994;9(1–3):183–9.

    Article  PubMed  CAS  Google Scholar 

  48. Harrison SM, Roffler-Tarlov SK. Cell death during development of testis and cerebellum in the mutant mouse weaver. Dev Biol. 1998;195(2):174–86.

    Article  PubMed  CAS  Google Scholar 

  49. Willinger M, Margolis DM. Effect of the weaver (wv) mutation on cerebellar neuron differentiation. I. Qualitative observations of neuron behavior in culture. Dev Biol. 1985;107(1):156–72.

    Article  PubMed  CAS  Google Scholar 

  50. Willinger M, Margolis DM. Effect of the weaver (wv) mutation on cerebellar neuron differentiation. II. Quantitation of neuron behavior in culture. Dev Biol. 1985;107(1):173–9.

    Article  PubMed  CAS  Google Scholar 

  51. Doughty ML, Delhaye-Bouchaud N, Mariani J. Quantitative analysis of cerebellar lobulation in normal and agranular rats. J Comp Neurol. 1998;399(3):306–20.

    Article  PubMed  CAS  Google Scholar 

  52. Lauder JM, Altman J, Krebs H. Some mechanisms of cerebellar foliation: effects of early hypo- and hyperthyroidism. Brain Res. 1974;76(1):33–40.

    Article  PubMed  CAS  Google Scholar 

  53. Pisu MB, Roda E, Guioli S, Avella D, Bottone MG, Bernocchi G. Proliferation and migration of granule cells in the developing rat cerebellum: cisplatin effects. Anat Rec A: Discov Mol Cell Evol Biol. 2005;287(2):1226–35.

    Google Scholar 

  54. Sonmez E, Herrup K. Role of staggerer gene in determining cell number in cerebellar cortex. II. Granule cell death and persistence of the external granule cell layer in young mouse chimeras. Brain Res. 1984;314(2):271–83.

    PubMed  CAS  Google Scholar 

  55. Hamre KM, Goldowitz D. Analysis of gene action in the meander tail mutant mouse: examination of cerebellar phenotype and mitotic activity of granule cell neuroblasts. J Comp Neurol. 1996;368(2):304–15.

    Article  PubMed  CAS  Google Scholar 

  56. Hatten ME, Liem RK, Mason CA. Weaver mouse cerebellar granule neurons fail to migrate on wild-type astroglial processes in vitro. J Neurosci. 1986;6(9):2676–83.

    PubMed  CAS  Google Scholar 

  57. Harkins AB, Fox AP. Cell death in weaver mouse cerebellum. Cerebellum. 2002;1(3):201–6.

    Article  PubMed  Google Scholar 

  58. Mares V, Lodin Z. The cellular kinetics of the developing mouse cerebellum. II. The function of the external granular layer in the process of gyrification. Brain Res. 1970;23(3):343–52.

    Article  PubMed  CAS  Google Scholar 

  59. Bayer SA, Wills KV, Wei J, Feng Y, Dlouhy SR, Hodes ME, et al. Phenotypic effects of the weaver gene are evident in the embryonic cerebellum but not in the ventral midbrain. Brain Res Dev Brain Res. 1996;96(1–2):130–7.

    Article  PubMed  CAS  Google Scholar 

  60. Cheng Y, Sudarov A, Szulc KU, Sgaier SK, Stephen D, Turnbull DH, et al. The engrailed homeobox genes determine the different foliation patterns in the vermis and hemispheres of the mammalian cerebellum. Development. 2010;137(3):519–29.

    Article  PubMed  CAS  Google Scholar 

  61. Airey DC, Lu L, Williams RW. Genetic control of the mouse cerebellum: identification of quantitative trait loci modulating size and architecture. J Neurosci. 2001;21(14):5099–109.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Dr. Shirley A. Bayer for providing weaver mice. This research was supported by grants, FIS10-00975, FMM-08, SGR2009-00761.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joaquín Martí or Sandra Villegas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martí, J., Santa-Cruz, M.C., Serra, R. et al. Principal Component and Cluster Analysis of Morphological Variables Reveals Multiple Discrete Sub-phenotypes in Weaver Mouse Mutants. Cerebellum 12, 406–417 (2013). https://doi.org/10.1007/s12311-012-0429-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-012-0429-8

Keywords

Navigation