Skip to main content

Advertisement

Log in

Disruption of Mitochondrial Homeostasis by Phytanic Acid in Cerebellum of Young Rats

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Phytanic acid (Phyt) brain concentrations are highly increased in Refsum disease, a peroxisomal disorder clinically characterized by neurological features, cardiac abnormalities, and retinitis pigmentosa. Considering that the pathogenesis of cerebellar ataxia, a common finding in this disease, is still unknown, in the present work we investigated the in vitro effects of Phyt at concentrations similar to those found in affected patients on important parameters of mitochondrial homeostasis in cerebellum from young rats. The respiratory parameters states 3 and 4 and respiratory control ratio (RCR) determined by oxygen consumption, membrane potential (∆Ψm), NAD(P)H pool content, and swelling were evaluated in mitochondrial preparations from this cerebral structure. Phyt markedly increased state 4 respiration, whereas state 3 respiration, the RCR, the mitochondrial matrix NAD(P)H content, and ∆Ψm were decreased by this fatty acid, being the latter effect partially prevented by N-acetylcysteine. These data indicate that Phyt behaves as an uncoupler of oxidative phosphorylation and as a metabolic inhibitor disrupting mitochondrial homeostasis in cerebellum. It is proposed that these pathomechanisms may contribute at least in part to the cerebellar alterations found in Refsum disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANT:

Adenine nucleotide translocator

ATC:

Atractyloside

NAC:

N-acetylcysteine

Phyt:

Phytanic acid

References

  1. Schönfeld P, Struy H. Refsum disease diagnostic marker phytanic acid alters the physical state of membrane proteins of liver mitochondria. FEBS Lett. 1999;457(2):179–83.

    Article  PubMed  Google Scholar 

  2. Wanders R, Jansen G, Skjeldal O. Refsum disease, peroxisomes and phytanic acid oxidation: a review. J Neuropathol Exp Neurol. 2001;60(11):1021–31.

    PubMed  CAS  Google Scholar 

  3. Foulon V, Asselberghs S, Geens W, Mannaerts GP, Casteels M, Van Veldhoven PP. Further studies on the substrate spectrum of phytanoyl-CoA hydroxylase: implications for Refsum disease? J Lipid Res. 2003;44(12):2349–55.

    Article  PubMed  CAS  Google Scholar 

  4. Ferdinandusse S, Zomer AW, Komen JC, van den Brink CE, Thanos M, Hamers FP, et al. Ataxia with loss of Purkinje cells in a mouse model for Refsum disease. Proc Natl Acad Sci U S A. 2008;105(46):17712–7.

    Article  PubMed  CAS  Google Scholar 

  5. Wierzbicki A, Lloyd M, Schofield C, Feher M, Gibberd F. Refsum’s disease: a peroxisomal disorder affecting phytanic acid alpha-oxidation. J Neurochem. 2002;80(5):727–35.

    Article  PubMed  CAS  Google Scholar 

  6. Chow CW, Poulos A, Fellenberg AJ, Christodoulou J, Danks DM. Autopsy findings in two siblings with infantile Refsum disease. Acta Neuropathol. 1992;83(2):190–5.

    Article  PubMed  CAS  Google Scholar 

  7. Eldjarn L, Try K, Stokke O, Munthe-Kaas A, Refsum S, Steinberg D, et al. Dietary effects on serum-phytanic-acid levels and on clinical manifestations in heredopathia atactica polyneuritiformis. Lancet. 1966;1(7439):691–3.

    Article  PubMed  CAS  Google Scholar 

  8. Gibberd F, Billimoria J, Page N, Retsas S. Heredopathia atactica polyneuritiformis (Refsum’s disease) treated by diet and plasma-exchange. Lancet. 1979;1(8116):575–8.

    Article  PubMed  CAS  Google Scholar 

  9. Hungerbühler J, Meier C, Rousselle L, Quadri P, Bogousslavsky J. Refsum’s disease: management by diet and plasmapheresis. Eur Neurol. 1985;24(3):153–9.

    Article  PubMed  Google Scholar 

  10. Masters-Thomas A, Bailes J, Billimoria J, Clemens M, Gibberd F, Page N. Heredopathia atactica polyneuritiformis (Refsum’s disease): 1. Clinical features and dietary management. J Hum Nutr. 1980;34(4):245–50.

    PubMed  CAS  Google Scholar 

  11. Komen J, Distelmaier F, Koopman W, Wanders R, Smeitink J, Willems P. Phytanic acid impairs mitochondrial respiration through protonophoric action. Cell Mol Life Sci. 2007;64(24):3271–81.

    Article  PubMed  CAS  Google Scholar 

  12. Kahlert S, Schönfeld P, Reiser G. The Refsum disease marker phytanic acid, a branched chain fatty acid, affects Ca2+ homeostasis and mitochondria, and reduces cell viability in rat hippocampal astrocytes. Neurobiol Dis. 2005;18(1):110–8.

    Article  PubMed  CAS  Google Scholar 

  13. Rönicke S, Kruska N, Kahlert S, Reiser G. The influence of the branched-chain fatty acids pristanic acid and Refsum disease-associated phytanic acid on mitochondrial functions and calcium regulation of hippocampal neurons, astrocytes, and oligodendrocytes. Neurobiol Dis. 2009;36(2):401–10.

    Article  PubMed  Google Scholar 

  14. Schönfeld P, Reiser G. Rotenone-like action of the branched-chain phytanic acid induces oxidative stress in mitochondria. J Biol Chem. 2006;281(11):7136–42.

    Article  PubMed  Google Scholar 

  15. Idel S, Ellinghaus P, Wolfrum C, Nofer J, Gloerich J, Assmann G, et al. Branched chain fatty acids induce nitric oxide-dependent apoptosis in vascular smooth muscle cells. J Biol Chem. 2002;277(51):49319–25.

    Article  PubMed  CAS  Google Scholar 

  16. Leipnitz G, Amaral A, Zanatta A, Seminotti B, Fernandes C, Knebel L, et al. Neurochemical evidence that phytanic acid induces oxidative damage and reduces the antioxidant defenses in cerebellum and cerebral cortex of rats. Life Sci. 2010;87(9–10):275–80.

    Article  PubMed  CAS  Google Scholar 

  17. Busanello E, Viegas C, Moura A, Tonin A, Grings M, Vargas C, et al. In vitro evidence that phytanic acid compromises Na(+), K(+)-ATPase activity and the electron flow through the respiratory chain in brain cortex from young rats. Brain Res. 2010;1352:231–8.

    Article  PubMed  CAS  Google Scholar 

  18. Rosenthal R, Hamud F, Fiskum G, Varghese P, Sharpe S. Cerebral ischemia and reperfusion: prevention of brain mitochondrial injury by lidoflazine. J Cereb Blood Flow Metab. 1987;7(6):752–8.

    Article  PubMed  CAS  Google Scholar 

  19. Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajner M. Alpha-ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res. 2010;1324:75–84.

    Article  PubMed  CAS  Google Scholar 

  20. Schuck PF, Ferreira GC, Tonin AM, Viegas CM, Busanello EN, Moura AP, et al. Evidence that the major metabolites accumulating in medium-chain acyl-CoA dehydrogenase deficiency disturb mitochondrial energy homeostasis in rat brain. Brain Res. 2009;1296:117–26.

    Article  PubMed  CAS  Google Scholar 

  21. Maciel EN, Kowaltowski AJ, Schwalm FD, Rodrigues JM, Souza DO, Vercesi AE, et al. Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition. J Neurochem. 2004;90(5):1025–35.

    Article  PubMed  CAS  Google Scholar 

  22. Akerman KE, Wikström MK. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 1976;68(2):191–7.

    Article  PubMed  CAS  Google Scholar 

  23. Kowaltowski AJ, Cosso RG, Campos CB, Fiskum G. Effect of Bcl-2 overexpression on mitochondrial structure and function. J Biol Chem. 2002;277(45):42802–7.

    Article  PubMed  CAS  Google Scholar 

  24. Schuck PF, Ferreira GC, Tahara EB, Klamt F, Kowaltowski AJ, Wajner M. cis-4-decenoic acid provokes mitochondrial bioenergetic dysfunction in rat brain. Life Sci. 2010;87(5–6):139–46.

    Article  PubMed  CAS  Google Scholar 

  25. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  PubMed  CAS  Google Scholar 

  26. Tran D, Greenhill W, Wilson S. Infantile refsum disease with enamel defects: a case report. Pediatr Dent. 2011;33(3):266–70.

    PubMed  Google Scholar 

  27. Brustovetsky NN, Dedukhova VI, Egorova MV, Mokhova EN, Skulachev VP. Inhibitors of the ATP/ADP antiporter suppress stimulation of mitochondrial respiration and H+ permeability by palmitate and anionic detergents. FEBS Lett. 1990;272(1–2):187–9.

    Article  PubMed  CAS  Google Scholar 

  28. Khailova LS, Prikhodko EA, Dedukhova VI, Mokhova EN, Popov VN, Skulachev VP. Participation of ATP/ADP antiporter in oleate- and oleate hydroperoxide-induced uncoupling suppressed by GDP and carboxyatractylate. Biochim Biophys Acta. 2006;1757(9–10):1324–9.

    PubMed  CAS  Google Scholar 

  29. Samartsev VN, Simonyan RA, Markova OV, Mokhova EN, Skulachev VP. Comparative study on uncoupling effects of laurate and lauryl sulfate on rat liver and skeletal muscle mitochondria. Biochim Biophys Acta. 2000;1459(1):179–90.

    Article  PubMed  CAS  Google Scholar 

  30. Skulachev VP. Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta. 1998;1363(2):100–24.

    Article  PubMed  CAS  Google Scholar 

  31. Skulachev VP. Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett. 1991;294(3):158–62.

    Article  PubMed  CAS  Google Scholar 

  32. Kadenbach B. Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta. 2003;1604(2):77–94.

    Article  PubMed  CAS  Google Scholar 

  33. Schönfeld P, Kahlert S, Reiser G. In brain mitochondria the branched-chain fatty acid phytanic acid impairs energy transduction and sensitizes for permeability transition. Biochem J. 2004;383(Pt 1):121–8.

    PubMed  Google Scholar 

  34. Ferdinandusse S, Rusch H, van Lint A, Dacremont G, Wanders R, Vreken P. Stereochemistry of the peroxisomal branched-chain fatty acid alpha- and beta-oxidation systems in patients suffering from different peroxisomal disorders. J Lipid Res. 2002;43(3):438–44.

    PubMed  CAS  Google Scholar 

  35. Khan A, Wei X, Snyder F, Mah J, Waterham H, Wanders R. Neurodegeneration in d-bifunctional protein deficiency: diagnostic clues and natural history using serial magnetic resonance imaging. Neuroradiology. 2010;52(12):1163–6.

    Article  PubMed  Google Scholar 

  36. Verhoeven N, Jakobs C. Human metabolism of phytanic acid and pristanic acid. Prog Lipid Res. 2001;40(6):453–66.

    Article  PubMed  CAS  Google Scholar 

  37. Nicholls DG. Mitochondrial membrane potential and aging. Aging Cell. 2004;3(1):35–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the financial support of CNPq, CAPES, PROPESq/UFRGS, FAPERGS, PRONEX, FINEP Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.0842-00, and Instituto Nacional de Ciência e Tecnologia- Excitotoxicidade e Neuroproteção (INCT-EN).

Financial Support

CNPq, PROPESq/UFRGS, FAPERGS, PRONEX, FINEP Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.0842-00, and Instituto Nacional de Ciência e Tecnologia-Excitotoxicidade e Neuroproteção (INCT-EN).

Conflict of Interest Statement

The authors declare that there are no potencial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busanello, E.N.B., Amaral, A.U., Tonin, A.M. et al. Disruption of Mitochondrial Homeostasis by Phytanic Acid in Cerebellum of Young Rats. Cerebellum 12, 362–369 (2013). https://doi.org/10.1007/s12311-012-0426-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-012-0426-y

Keywords

Navigation