Skip to main content
Log in

Tracking Cell Lineage and Fate into Cerebellar Circuits

  • Journal Club
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Understanding how cells from different neuronal and glial lineages contribute to functional circuits has been complicated by the difficulty in tracking cells as they integrate into brain circuits. Sudarov et al. (J Neurosci 31(30):11055–11069, 2011) used a powerful genetics-based lineage marking approach to birth date ventricular zone-derived cells in the mouse cerebellum. The authors use their novel tools to elucidate the spatial and temporal dynamics of how distinct ventricular zone lineages are generated and assemble into the cerebellar microcircuitry. In this journal club, we discuss and evaluate the author's major findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Sudarov A, Turnbull RK, Kim EJ, Lebel-Potter M, Guillemot F, Joyner AL. Ascl1 genetics reveals insights into cerebellum local circuit assembly. J Neurosci. 2011;31(30):11055–69.

    Article  PubMed  CAS  Google Scholar 

  2. Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL. Morphogenetic and cellular movements that shape the mouse cerebellum: insights from genetic fate mapping. Neuron. 2005;45(1):27–40.

    PubMed  CAS  Google Scholar 

  3. Joyner AL, Zervas M. Genetic inducible fate mapping in mouse: establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Dev Dyn. 2006;235(9):2376–85.

    Article  PubMed  Google Scholar 

  4. Legue E, Joyner AL. Genetic fate mapping using site-specific recombinases. Methods Enzymol. 2010;477:153–81.

    Article  PubMed  CAS  Google Scholar 

  5. Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, et al. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron. 2005;47(2):201–13.

    Article  PubMed  CAS  Google Scholar 

  6. Machold R, Fishell G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron. 2005;48(1):17–24.

    Article  PubMed  CAS  Google Scholar 

  7. Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CV, et al. Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci U S A. 2007;104(12):5193–8.

    Article  PubMed  CAS  Google Scholar 

  8. Wang VY, Rose MF, Zoghbi HY. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron. 2005;48(1):31–43.

    Article  PubMed  CAS  Google Scholar 

  9. Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell. 1993;75(3):463–76.

    Article  PubMed  CAS  Google Scholar 

  10. Battiste J, Helms AW, Kim EJ, Savage TK, Lagace DC, Mandyam CD, et al. Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord. Development. 2007;134(2):285–93.

    Article  PubMed  CAS  Google Scholar 

  11. Kim EJ, Leung CT, Reed RR, Johnson JE. In vivo analysis of Ascl1 defined progenitors reveals distinct developmental dynamics during adult neurogenesis and gliogenesis. J Neurosci. 2007;27(47):12764–74.

    Article  PubMed  CAS  Google Scholar 

  12. Guillemot F, Joyner AL. Dynamic expression of the murine Achaete-Scute homologue Mash-1 in the developing nervous system. Mech Dev. 1993;42(3):171–85.

    Article  PubMed  CAS  Google Scholar 

  13. Laine J, Axelrad H. The candelabrum cell: a new interneuron in the cerebellar cortex. J Comp Neurol. 1994;339(2):159–73.

    Article  PubMed  CAS  Google Scholar 

  14. Kim EJ, Battiste J, Nakagawa Y, Johnson JE. Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture. Mol Cell Neurosci. 2008;38(4):595–606.

    Article  PubMed  CAS  Google Scholar 

  15. Sillitoe RV, Joyner AL. Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol. 2007;23:549–77.

    Article  PubMed  CAS  Google Scholar 

  16. Apps R, Hawkes R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci. 2009;10(9):670–81.

    Article  PubMed  CAS  Google Scholar 

  17. White JJ, Sillitoe RV. Development of the cerebellum: from gene expression patterns to circuit maps. WIREs Dev Biol. 2012, doi:10.1002/wdev.65.

  18. Horn KM, Pong M, Gibson AR. Functional relations of cerebellar modules of the cat. J Neurosci. 2010;30(28):9411–23.

    PubMed  CAS  Google Scholar 

  19. Ebner TJ, Wang X, Gao W, Cramer SW, Chen G. Parasagittal zones in the cerebellar cortex differ in excitability, information processing, and synaptic plasticity. Cerebellum. 2012;11(2):418–9.

    Article  PubMed  Google Scholar 

  20. Altman JBS. Development of the cerebellar system in relation to its evolution, structure, and functions. New York: CRC; 1997.

    Google Scholar 

  21. Hashimoto M, Mikoshiba K. Mediolateral compartmentalization of the cerebellum is determined on the “birth date” of Purkinje cells. J Neurosci. 2003;23(36):11342–51.

    PubMed  CAS  Google Scholar 

  22. Cerminara NL, Apps R. Behavioural significance of cerebellar modules. Cerebellum. 2011;10(3):484–94.

    Article  PubMed  Google Scholar 

  23. Sillitoe RV, Hawkes R. Zones and stripes: development of cerebellar topography. Handbook of the cerebellum and cerebellar disorders. 2012; in press.

  24. Namba K, Sugihara I, Hashimoto M. Close correlation between the birth date of Purkinje cells and the longitudinal compartmentalization of the mouse adult cerebellum. J Comp Neurol. 2011;519(13):2594–614.

    Article  PubMed  Google Scholar 

  25. Leto K, Bartolini A, Yanagawa Y, Obata K, Magrassi L, Schilling K, et al. Laminar fate and phenotype specification of cerebellar GABAergic interneurons. J Neurosci. 2009;29(21):7079–91.

    Article  PubMed  CAS  Google Scholar 

  26. Grimaldi P, Parras C, Guillemot F, Rossi F, Wassef M. Origins and control of the differentiation of inhibitory interneurons and glia in the cerebellum. Dev Biol. 2009;328(2):422–33.

    Article  PubMed  CAS  Google Scholar 

  27. Silbereis J, Cheng E, Ganat YM, Ment LR, Vaccarino FM. Precursors with glial fibrillary acidic protein promoter activity transiently generate GABA interneurons in the postnatal cerebellum. Stem Cells. 2009;27(5):1152–63.

    Article  PubMed  CAS  Google Scholar 

  28. Kim EJ, Ables JL, Dickel LK, Eisch AJ, Johnson JE. Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS One. 2011;6(3):e18472.

    Article  PubMed  CAS  Google Scholar 

  29. Taniguchi H, He M, Wu P, Kim S, Paik R, Sugino K, et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron. 2011;71(6):995–1013.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that there is no conflict of interest in the work presented in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stacey L. Reeber or Kevin J. O’Donovan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reeber, S.L., O’Donovan, K.J. Tracking Cell Lineage and Fate into Cerebellar Circuits. Cerebellum 11, 829–833 (2012). https://doi.org/10.1007/s12311-012-0409-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-012-0409-z

Keywords

Navigation