Cerebellar Function in Developmental Dyslexia

Abstract

Developmental dyslexia is a genetically based neurobiological syndrome, which is characterized by reading difficulty despite normal or high general intelligence. Even remediated dyslexic readers rarely achieve fast, fluent reading. Some dyslexics also have impairments in attention, short-term memory, sequencing (letters, word sounds, and motor acts), eye movements, poor balance, and general clumsiness. The presence of “cerebellar” motor and fluency symptoms led to the proposal that cerebellar dysfunction contributes to the etiology of dyslexia. Supporting this, functional imaging studies suggest that the cerebellum is part of the neural network supporting reading in typically developing readers, and reading difficulties have been reported in patients with cerebellar damage. Differences in both cerebellar asymmetry and gray matter volume are some of the most consistent structural brain findings in dyslexics compared with good readers. Furthermore, cerebellar functional activation patterns during reading and motor learning can differ in dyslexic readers. Behaviorally, some children and adults with dyslexia show poorer performance on cerebellar motor tasks, including eye movement control, postural stability, and implicit motor learning. However, many dyslexics do not have cerebellar signs, many cerebellar patients do not have reading problems, and differences in dyslexic brains are found throughout the whole reading network, and not isolated to the cerebellum. Therefore, impaired cerebellar function is probably not the primary cause of dyslexia, but rather a more fundamental neurodevelopmental abnormality leads to differences throughout the reading network.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    World Federation of Neurology. Report of research group on dyslexia and world illiteracy. Dallas: World Federation of Neurology; 1968.

    Google Scholar 

  2. 2.

    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. Washington: American Psychiatric Association; 2000.

    Google Scholar 

  3. 3.

    Scerri TS, Schulte-Korne G. Genetics of developmental dyslexia. Eur Child Adolesc Psychiatry. 2010;19(3):179–97.

    PubMed  Article  Google Scholar 

  4. 4.

    Galaburda A, Livingstone M. Evidence for a magnocellular deficit in developmental dyslexia. Ann N Y Acad Sci. 1993;682:70–82.

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Stein J. The magnocellular theory of developmental dyslexia. Dyslexia. 2001;7(1):12–36.

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Benasich A, Tallal P. Infant discrimination of rapid auditory cues predicts later language impairment. Behav Brain Res. 2002;136:31–49.

    PubMed  Article  Google Scholar 

  7. 7.

    Lyytinen H, Ahonen T, Eklund K, Guttorm T, Kulju P, Laakso ML, et al. Early development of children at familial risk for dyslexia—follow-up from birth to school age. Dyslexia. 2004;10(3):146–78.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Sun YF, Lee JS, Kirby R. Brain imaging findings in dyslexia. Pediatr Neonatol. 2010;51(2):89–96.

    PubMed  Article  Google Scholar 

  9. 9.

    Eckert M. Neuroanatomical markers for dyslexia: a review of dyslexia structural imaging studies. Neuroscientist. 2004;10(4):362–71.

    PubMed  Article  Google Scholar 

  10. 10.

    Nicolson R, Fawcett A, Dean P. Developmental dyslexia: the cerebellar deficit hypothesis. Trends Neurosci. 2001;24(9):508–11.

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Miall R, Weir D, Wolpert D, Stein J. Is the cerebellum a Smith predictor? J Motor Behav. 1993;25:203–16.

    CAS  Article  Google Scholar 

  12. 12.

    Wolpert D, Miall R, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2(9):338–47.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Miall RC, King D. State estimation in the cerebellum. Cerebellum. 2008;7(4):572–6.

    PubMed  Article  Google Scholar 

  14. 14.

    Ito M. The modifiable neuronal network of the cerebellum. Jpn J Physiol. 1984;34(5):781–92.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Hesslow G. Conscious thought as simulation of behaviour and perception. Trends Cogn Sci. 2002;6(6):242–7.

    PubMed  Article  Google Scholar 

  17. 17.

    Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Imamizu H, Kawato M. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res. 2009;73(4):527–44.

    PubMed  Article  Google Scholar 

  19. 19.

    Kelly R, Strick P. Cerebellar loops with motor cortex and prefrontal cortex. J Neurosci. 2003;23:8432–44.

    PubMed  CAS  Google Scholar 

  20. 20.

    Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.

    PubMed  Article  Google Scholar 

  22. 22.

    Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.

    PubMed  Article  Google Scholar 

  23. 23.

    Snider R, Stowell A. Electro-anatomical studies on a tactile system in the cerebellum of monkey (Macaca mulatta). Anat Rec. 1944;88:457.

    Google Scholar 

  24. 24.

    Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.

    PubMed  Article  Google Scholar 

  25. 25.

    Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953–65.

    PubMed  Article  Google Scholar 

  27. 27.

    Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

    PubMed  Article  Google Scholar 

  28. 28.

    Dehaene S. Reading in the brain: the science and evolution of a human invention. New York: Viking; 2009.

    Google Scholar 

  29. 29.

    Peterson RL, Pennington BF. Developmental dyslexia. Lancet. 2012;379(9830):1997–2007.

    PubMed  Article  Google Scholar 

  30. 30.

    Glickstein M. How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci. 2000;23(12):613–7.

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Fabbro F. Introduction to language and the cerebellum. J Neurolinguist. 2000;13(2–3):83–94.

    Article  Google Scholar 

  32. 32.

    Marien P, Engelborghs S, Fabbro F, De Deyn PP. The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Lang. 2001;79(3):580–600.

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Ackermann H. Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci. 2008;31(6):265–72.

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum. 2012;11(2):352–65.

    PubMed  Article  Google Scholar 

  35. 35.

    Stein J, Glickstein M. Role of the cerebellum in visual guidance of movement. Physiol Rev. 1992;72:967–1017.

    PubMed  CAS  Google Scholar 

  36. 36.

    Akshoomoff N, Courchesne E, Townsend J. Attention coordination and anticipatory control. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 575–98.

    Google Scholar 

  37. 37.

    Allen G, Buxton R, Wong E, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275:1940–3.

    PubMed  CAS  Article  Google Scholar 

  38. 38.

    Gottwald B, Mihajlovic Z, Wilde B, Mehdorn HM. Does the cerebellum contribute to specific aspects of attention? Neuropsychologia. 2003;41(11):1452–60.

    PubMed  Article  Google Scholar 

  39. 39.

    Peng DL, Xu D, Jin Z, Luo Q, Ding GS, Perry C, et al. Neural basis of the non-attentional processing of briefly presented words. Hum Brain Mapp. 2003;18(3):215–21.

    PubMed  Article  Google Scholar 

  40. 40.

    Ruz M, Wolmetz ME, Tudela P, McCandliss BD. Two brain pathways for attended and ignored words. Neuroimage. 2005;27(4):852–61.

    PubMed  Article  Google Scholar 

  41. 41.

    Stowe LA, Paans AM, Wijers AA, Zwarts F. Activations of “motor” and other non-language structures during sentence comprehension. Brain Lang. 2004;89(2):290–9.

    PubMed  Article  Google Scholar 

  42. 42.

    Ide JS, Li CS. A cerebellar thalamic cortical circuit for error-related cognitive control. Neuroimage. 2011;54(1):455–64.

    PubMed  Article  Google Scholar 

  43. 43.

    Ivry R. Cerebellar timing systems. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Adademic Press; 1997. p. 555–73.

    Google Scholar 

  44. 44.

    Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann N Y Acad Sci. 2002;978:302–17.

    PubMed  Article  Google Scholar 

  45. 45.

    Ivry RB, Spencer RM. The neural representation of time. Curr Opin Neurobiol. 2004;14(2):225–32.

    PubMed  CAS  Article  Google Scholar 

  46. 46.

    Ackermann H, Mathiak K, Ivry RB. Temporal organization of “internal speech” as a basis for cerebellar modulation of cognitive functions. Behav Cogn Neurosci Rev. 2004;3(1):14–22.

    PubMed  Article  Google Scholar 

  47. 47.

    Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, De Lisa M, Leggio MG. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7(4):611–5.

    PubMed  Article  Google Scholar 

  48. 48.

    Molinari M, Leggio MG, Solida A, Ciorra R, Misciagna S, Silveri MC, et al. Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain. 1997;120(Pt 10):1753–62.

    PubMed  Article  Google Scholar 

  49. 49.

    Gomez-Beldarrain M, Garcia-Monco J, Rubio B, Pascual-Leone A. Effect of focal cerebellar lesions on procedural learning in the serial reaction time task. Exp Brain Res. 1998;120:25–30.

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Quintero-Gallego EA, Gomez CM, Casares EV, Marquez J, Perez-Santamaria FJ. Declarative and procedural learning in children and adolescents with posterior fossa tumours. Behav Brain Funct. 2006;2:9.

    PubMed  Article  Google Scholar 

  51. 51.

    Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, et al. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex. 2010;46(7):845–57.

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Turkeltaub PE, Gareau L, Flowers DL, Zeffiro T, Eden G. Development of neural mechanisms for reading. Nat Neurosci. 2003;6:767–73.

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    Mechelli A, Price CJ, Henson RN, Friston KJ. Estimating efficiency a priori: a comparison of blocked and randomized designs. Neuroimage. 2003;18(3):798–805.

    PubMed  Article  Google Scholar 

  54. 54.

    Gizewski ER, Timmann D, Forsting M. Specific cerebellar activation during Braille reading in blind subjects. Hum Brain Mapp. 2004;22(3):229–35.

    PubMed  Article  Google Scholar 

  55. 55.

    Carreiras M, Mechelli A, Estevez A, Price CJ. Brain activation for lexical decision and reading aloud: two sides of the same coin? J Cogn Neurosci. 2007;19(3):433–44.

    PubMed  Article  Google Scholar 

  56. 56.

    Richards TL, Aylward EH, Field KM, Grimme AC, Raskind W, Richards AL, et al. Converging evidence for triple word form theory in children with dyslexia. Dev Neuropsychol. 2006;30(1):547–89.

    PubMed  Article  Google Scholar 

  57. 57.

    Joubert S, Beauregard M, Walter N, Bourgouin P, Beaudoin G, Leroux JM, et al. Neural correlates of lexical and sublexical processes in reading. Brain Lang. 2004;89(1):9–20.

    PubMed  Article  Google Scholar 

  58. 58.

    McDermott KB, Petersen SE, Watson JM, Ojemann JG. A procedure for identifying regions preferentially activated by attention to semantic and phonological relations using functional magnetic resonance imaging. Neuropsychologia. 2003;41(3):293–303.

    PubMed  Article  Google Scholar 

  59. 59.

    Kujala J, Pammer K, Cornelissen P, Roebroeck A, Formisano E, Salmelin R. Phase coupling in a cerebro-cerebellar network at 8–13 Hz during reading. Cereb Cortex. 2007;17(6):1476–85.

    PubMed  Article  Google Scholar 

  60. 60.

    Moretti R, Bava A, Torre P, Antonello R, Cazzato G. Reading errors in patients with cerebellar vermis lesions. J Neurol. 2002;249(4):461–8.

    PubMed  Article  Google Scholar 

  61. 61.

    Moretti R, Torre P, Antonello R, Carraro N, Zambito-Marsala S, Ukmar M, et al. Peculiar aspects of reading and writing performances in patients with olivopontocerebellar atrophy. Percept Motor Skill. 2002;94(2):677–94.

    Article  Google Scholar 

  62. 62.

    Rees G, Frackowiak R, Frith C. Two modulatory effects of attention that mediate object categorization in human cortex. Science. 1997;275(5301):835–8.

    PubMed  CAS  Article  Google Scholar 

  63. 63.

    Facoetti A, Molteni M. The gradient of visual attention in developmental dyslexia. Neuropsychologia. 2001;39:352–7.

    PubMed  CAS  Article  Google Scholar 

  64. 64.

    Marien P, Baillieux H, Smet HD, Engelborghs S, Wilssens I, Paquier P, et al. Cognitive, linguistic and affective disturbances following a right cerebellar artery infarction: a case study. Cortex. 2009;45:527–36.

    Google Scholar 

  65. 65.

    Karaci R, Ozturk S, Ozbakir S, Cansaran N. Evaluation of language functions in acute cerebellar vascular diseases. J Stroke Cerebrovasc Dis. 2008;17(5):251–6.

    PubMed  Article  Google Scholar 

  66. 66.

    Ben-Yehudah G, Fiez JA. Impact of cerebellar lesions on reading and phonological processing. Ann N Y Acad Sci. 2008;1145:260–74.

    PubMed  Article  Google Scholar 

  67. 67.

    McPherson W, Ackerman P, Dykman R. Auditory and visual rhyme judgments reveal differences and similarities between normal and disabled adolescent readers. Dyslexia. 1997;3:63–77.

    Article  Google Scholar 

  68. 68.

    Shankweiler D, Liberman I. Misreading: A search for causes. In: Kavanagh J, Mattingly I, editors. Language by ear and by eye: the relationships between speech and reading. Cambridge: MIT Press; 1972. p. 293–317.

    Google Scholar 

  69. 69.

    Lieberman I, Shankweiler D, Fischer F, Carter B. Explicit syllable and phoneme segmentation in the young child. J Exp Child Psych. 1974;18:201–12.

    Article  Google Scholar 

  70. 70.

    Bradley L, Bryant P. Categorising sounds and learning to read—a causal connection. Nature. 1983;301:419–21.

    Article  Google Scholar 

  71. 71.

    Snowling MJ. Phonemic deficits in developmental dyslexia. Psychol Res. 1981;43(2):219–34.

    PubMed  CAS  Article  Google Scholar 

  72. 72.

    Snowling M. Dyslexia. Oxford: Blackwell; 2000.

    Google Scholar 

  73. 73.

    Ramus F. Neurobiology of dyslexia: a reinterpretation of the data. Trends Neurosci. 2004;27(12):720–6.

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Wimmer H. Characteristics of developmental dyslexia in a regular writing system. Appl Psycholinguist. 1993;14(1):1.

    Article  Google Scholar 

  75. 75.

    Stein JF, Fowler S. Diagnosis of dyslexia by means of a new indicator of eye dominance. Br J Ophthalmol. 1982;66(5):332–6.

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Bucci MP, Bremond-Gignac D, Kapoula Z. Latency of saccades and vergence eye movements in dyslexic children. Exp Brain Res. 2008;188(1):1–12.

    PubMed  Article  Google Scholar 

  77. 77.

    Bucci MP, Bremond-Gignac D, Kapoula Z. Poor binocular coordination of saccades in dyslexic children. Graefes Arch Clin Exp Ophthalmol. 2008;246(3):417–28.

    PubMed  Article  Google Scholar 

  78. 78.

    Fawcett AJ, Nicolson RI. Performance of dyslexic children on cerebellar and cognitive tests. J Motor Behav. 1999;31(1):68–78.

    Article  Google Scholar 

  79. 79.

    Stoodley CJ, Fawcett AJ, Nicolson RI, Stein JF. Impaired balancing ability in dyslexic children. Exp Brain Res. 2005;167(3):370–80.

    PubMed  Article  Google Scholar 

  80. 80.

    Wolf M, Obregon M. Early naming deficits, developmental dyslexia, and a specific deficit hypothesis. Brain Lang. 1992;42:219–47.

    PubMed  CAS  Article  Google Scholar 

  81. 81.

    Nicolson RI, Fawcett AJ. Reaction times and dyslexia. Q J Exp Psychol A. 1994;47(1):29–48.

    PubMed  CAS  Google Scholar 

  82. 82.

    Stoodley CJ, Stein JF. A processing speed deficit in dyslexic adults? Evidence from a peg-moving task. Neurosci Lett. 2006;399(3):264–7.

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Vicari S, Marotta L, Menghini D, Molinari M, Petrosini L. Implicit learning deficit in children with developmental dyslexia. Neuropsychologia. 2003;41:108–14.

    PubMed  Article  Google Scholar 

  84. 84.

    Vicari S, Finzi A, Menghini D, Marotta L, Baldi S, Petrosini L. Do children with developmental dyslexia have an implicit learning deficit? J Neurol Neurosurg Psychiatry. 2005;76(10):1392–7.

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Howard Jr JH, Howard DV, Japikse KC, Eden GF. Dyslexics are impaired on implicit higher-order sequence learning, but not on implicit spatial context learning. Neuropsychologia. 2006;44(7):1131–44.

    PubMed  Article  Google Scholar 

  86. 86.

    Stoodley CJ, Harrison EP, Stein JF. Implicit motor learning deficits in dyslexic adults. Neuropsychologia. 2006;44(5):795–8.

    PubMed  Article  Google Scholar 

  87. 87.

    Stoodley CJ, Ray NJ, Jack A, Stein JF. Implicit learning in control, dyslexic, and garden-variety poor readers. Ann N Y Acad Sci. 2008;1145:173–83.

    PubMed  Article  Google Scholar 

  88. 88.

    Cornelissen P, Richardson A, Mason A, Fowler S, Stein J. Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls. Vis Res. 1995;35:1483–94.

    PubMed  CAS  Article  Google Scholar 

  89. 89.

    McAnally KI, Stein JF. Auditory temporal coding in dyslexia. Proc Roy Soc Lond B-Biol Sci. 1996;263(1373):961–5.

    CAS  Article  Google Scholar 

  90. 90.

    Stein J, Talcott J, Witton C. The sensorimotor basis of developmental dyslexia. In: Fawcett A, editor. Dyslexia: theory and good practice. London: Whurr; 2001. p. 65–88.

    Google Scholar 

  91. 91.

    Talcott J, Witton C. A sensory linguistic approach to the development of normal and dysfunctional reading skills. In: Witruk E, Friederici A, Lachmann T, editors. Basic functions of language, reading and reading disability. Boston: Kluwer; 2002. p. 213–40.

    Google Scholar 

  92. 92.

    Boets B, Wouters J, van Wieringen A, De Smedt B, Ghesquiere P. Modelling relations between sensory processing, speech perception, orthographic and phonological ability, and literacy achievement. Brain Lang. 2008;106(1):29–40.

    PubMed  Article  Google Scholar 

  93. 93.

    Boets B, Vandermosten M, Cornelissen P, Wouters J, Ghesquiere P. Coherent motion sensitivity and reading development in the transition from prereading to reading stage. Child Dev. 2011;82(3):854–69.

    PubMed  Article  Google Scholar 

  94. 94.

    Boets B, Vandermosten M, Poelmans H, Luts H, Wouters J, Ghesquiere P. Preschool impairments in auditory processing and speech perception uniquely predict future reading problems. Res Dev Disabil. 2011;32(2):560–70.

    PubMed  Article  Google Scholar 

  95. 95.

    Menghini D, Finzi A, Benassi M, Bolzani R, Facoetti A, Giovagnoli S, et al. Different underlying neurocognitive deficits in developmental dyslexia: a comparative study. Neuropsychologia. 2010;48(4):863–72.

    PubMed  CAS  Article  Google Scholar 

  96. 96.

    Nicolson RI, Fawcett AJ. Dyslexia, dysgraphia, procedural learning and the cerebellum. Cortex. 2011;47(1):117–27.

    PubMed  Article  Google Scholar 

  97. 97.

    Rae C, Harasty JA, Dzendrowskyj TE, Talcott JB, Simpson JM, Blamire AM, et al. Cerebellar morphology in developmental dyslexia. Neuropsychologia. 2002;40(8):1285–92.

    PubMed  Article  Google Scholar 

  98. 98.

    Kibby MY, Fancher JB, Markanen R, Hynd GW. A quantitative magnetic resonance imaging analysis of the cerebellar deficit hypothesis of dyslexia. J Child Neurol. 2008;23(4):368–80.

    PubMed  Article  Google Scholar 

  99. 99.

    Leonard CM, Eckert MA, Lombardino LJ, Oakland T, Kranzler J, Mohr CM, et al. Anatomical risk factors for phonological dyslexia. Cereb Cortex. 2001;11(2):148–57.

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Eckert M, Leonard C, Richards T, Aylward E, Thomson J, Berninger V. Anatomical correlates of dyslexia: frontal and cerebellar findings. Brain. 2003;126:482–94.

    PubMed  Article  Google Scholar 

  101. 101.

    Leonard CM, Kuldau JM, Maron L, Ricciuti N, Mahoney B, Bengtson M, et al. Identical neural risk factors predict cognitive deficit in dyslexia and schizophrenia. Neuropsychology. 2008;22(2):147–58.

    PubMed  Article  Google Scholar 

  102. 102.

    Brambati SM, Termine C, Ruffino M, Stella G, Fazio F, Cappa SF, et al. Regional reductions of gray matter volume in familial dyslexia. Neurology. 2004;63(4):742–5.

    PubMed  CAS  Article  Google Scholar 

  103. 103.

    Brown W, Eliez S, Menon V, Rumsey J, White C, Reiss A. Preliminary evidence of widespread morphological variations in the brain in dyslexia. Neurology. 2001;56(6):781–3.

    PubMed  CAS  Article  Google Scholar 

  104. 104.

    Kronbichler M, Wimmer H, Staffen W, Hutzler F, Mair A, Ladurner G. Developmental dyslexia: gray matter abnormalities in the occipitotemporal cortex. Hum Brain Mapp. 2008;29(5):613–25.

    PubMed  Article  Google Scholar 

  105. 105.

    Silani G, Frith U, Demonet J, Fazio F, Perani D, Price C, et al. Brain abnormalities underlying altered activation in dyslexia: a voxel based morphometry study. Brain. 2005;128:2453–61.

    PubMed  CAS  Article  Google Scholar 

  106. 106.

    Hoeft F, Meyler A, Hernandez A, Juel C, Taylor-Hill H, Martindale JL, et al. Functional and morphometric brain dissociation between dyslexia and reading ability. Proc Natl Acad Sci USA. 2007;104(10):4234–9.

    PubMed  CAS  Article  Google Scholar 

  107. 107.

    Stoodley CJ, Oates JM, Sawyer EJ, Desko AG, Shakerdge NB, editors. Structural differences in the cerebellum in autism spectrum disorders, ADHD, and developmental dyslexia. Society for Neuroscience Annual Meeting, Washington, DC, USA; 2011.

  108. 108.

    Pernet CR, Poline JB, Demonet JF, Rousselet GA. Brain classification reveals the right cerebellum as the best biomarker of dyslexia. BMC Neurosci. 2009;10:67.

    PubMed  Article  Google Scholar 

  109. 109.

    Bishop D. Cerebellar abnormalities in developmental dyslexia: cause, correlate or consequence? Cortex. 2002;38:491–8.

    PubMed  Article  Google Scholar 

  110. 110.

    Raschle NM, Chang M, Gaab N. Structural brain alterations associated with dyslexia predate reading onset. Neuroimage. 2011;57(3):742–9.

    PubMed  Article  Google Scholar 

  111. 111.

    Brunswick N, McCrory E, Price C, Frith C, Frith U. Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: a search for Wernicke’s Wortschatz? Brain. 1999;122:1901–17.

    PubMed  Article  Google Scholar 

  112. 112.

    Nicolson RI, Fawcett AJ, Berry EL, Jenkins IH, Dean P, Brooks DJ. Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. Lancet. 1999;353(9165):1662–7.

    PubMed  CAS  Article  Google Scholar 

  113. 113.

    Menghini D, Hagberg G, Caltagirone C, Petrosini L, Vicari S. Implicit learning deficits in dyslexic adults: an fMRI study. Neuroimage. 2006;33:1218–26.

    PubMed  Article  Google Scholar 

  114. 114.

    Horwitz B, Rumsey JM, Donohue BC. Functional connectivity of the angular gyrus in normal reading and dyslexia. Proc Natl Acad Sci USA. 1998;95(15):8939–44.

    PubMed  CAS  Article  Google Scholar 

  115. 115.

    Stanberry LI, Richards TL, Berninger VW, Nandy RR, Aylward EH, Maravilla KR, et al. Low-frequency signal changes reflect differences in functional connectivity between good readers and dyslexics during continuous phoneme mapping. Magn Reson Imaging. 2006;24(3):217–29.

    PubMed  Article  Google Scholar 

  116. 116.

    Baillieux H, Vandervliet EJ, Manto M, Parizel PM, De Deyn PP, Marien P. Developmental dyslexia and widespread activation across the cerebellar hemispheres. Brain Lang. 2009;108(2):122–32.

    PubMed  Article  Google Scholar 

  117. 117.

    Siok WT, Niu Z, Jin Z, Perfetti CA, Tan LH. A structural-functional basis for dyslexia in the cortex of Chinese readers. Proc Natl Acad Sci USA. 2008;105(14):5561–6.

    PubMed  CAS  Article  Google Scholar 

  118. 118.

    Hu W, Lee HL, Zhang Q, Liu T, Geng LB, Seghier ML, et al. Developmental dyslexia in Chinese and English populations: dissociating the effect of dyslexia from language differences. Brain. 2010;133(Pt 6):1694–706.

    PubMed  Article  Google Scholar 

  119. 119.

    Beneventi H, Tonnessen FE, Ersland L, Hugdahl K. Working memory deficit in dyslexia: behavioral and FMRI evidence. Int J Neurosci. 2010;120(1):51–9.

    PubMed  Article  Google Scholar 

  120. 120.

    Stoodley CJ, Stein JF. The cerebellum and dyslexia. Cortex. 2011;47(1):101–16.

    PubMed  Article  Google Scholar 

  121. 121.

    Hutzler F, Kronbichler M, Jacobs AM, Wimmer H. Perhaps correlational but not causal: no effect of dyslexic readers’ magnocellular system on their eye movements during reading. Neuropsychologia. 2006;44(4):637–48.

    PubMed  Article  Google Scholar 

  122. 122.

    Fischer B, Hartnegg K. Stability of gaze control in dyslexia. Strabismus. 2000;8(2):119–22.

    PubMed  CAS  Google Scholar 

  123. 123.

    Stein J, Fowler S. Effect of monocular occlusion on visuomotor perception and reading in dyslexic children. Lancet. 1985;2(8446):69–73.

    PubMed  CAS  Article  Google Scholar 

  124. 124.

    Fowler M. Binocular control in dyslexics. In: Stein J, editor. Vision and visual dyslexia. Boston: CRC; 1991. p. 141–6.

    Google Scholar 

  125. 125.

    Eden GF, Stein JF, Wood HM, Wood FB. Differences in eye movements and reading problems in dyslexic and normal children. Vision Res. 1994;34(10):1345–58.

    PubMed  CAS  Article  Google Scholar 

  126. 126.

    Jainta S, Kapoula Z. Dyslexic children are confronted with unstable binocular fixation while reading. PLoS One. 2011;6(4):e18694.

    PubMed  CAS  Article  Google Scholar 

  127. 127.

    Biscaldi M, Gezeck S, Stuhr V. Poor saccadic control correlates with dyslexia. Neuropsychologia. 1998;36(11):1189–202.

    PubMed  CAS  Article  Google Scholar 

  128. 128.

    Fischer B, Hartnegg K. Effects of visual training on saccade control in dyslexia. Perception. 2000;29(5):531–42.

    PubMed  CAS  Article  Google Scholar 

  129. 129.

    Ram-Tsur R, Faust M, Caspi A, Gordon CR, Zivotofsky AZ. Evidence for ocular motor deficits in developmental dyslexia: application of the double-step paradigm. Invest Ophthalmol Vis Sci. 2006;47(10):4401–9.

    PubMed  Article  Google Scholar 

  130. 130.

    Rayner K. Eye movements in reading and information processing: 20 years of research. Psychol Bull. 1998;124(3):372–422.

    PubMed  CAS  Article  Google Scholar 

  131. 131.

    De Luca M, Borrelli M, Judica A, Spinelli D, Zoccolotti P. Reading words and pseudowords: an eye movement study of developmental dyslexia. Brain Lang. 2002;80(3):617–26.

    PubMed  Article  Google Scholar 

  132. 132.

    Hutzler F, Wimmer H. Eye movements of dyslexic children when reading in a regular orthography. Brain Lang. 2004;89(1):235–42.

    PubMed  Article  Google Scholar 

  133. 133.

    Yap R, van der Leij A. Testing the automatization deficit hypothesis of dyslexia via a dual-task paradigm. J Learn Disabil. 1994;27:660–5.

    PubMed  CAS  Article  Google Scholar 

  134. 134.

    Nicolson RI, Fawcett AJ. Automaticity: a new framework for dyslexia research? Cognition. 1990;35(2):159–82.

    PubMed  CAS  Article  Google Scholar 

  135. 135.

    Moe-Nilssen R, Helbostad J, Talcott J, Toennessen F. Balance and gait in children with dyslexia. Exp Brain Res. 2003;150:237–44.

    PubMed  Google Scholar 

  136. 136.

    Getchell N, Pabreja P, Neeld K, Carrio V. Comparing children with and without dyslexia on the Movement Assessment Battery for Children and the Test of Gross Motor Development. Percept Mot Skills. 2007;105(1):207–14.

    PubMed  Article  Google Scholar 

  137. 137.

    Viholainen H, Aro M, Ahonen T, Crawford S, Cantell M, Kooistra L. Are balance problems connected to reading speed or the familial risk of dyslexia? Dev Med Child Neurol. 2011;53(4):350–3.

    PubMed  Article  Google Scholar 

  138. 138.

    van der Leij A, van Daal VH. Automatization aspects of dyslexia: speed limitations in word identification, sensitivity to increasing task demands, and orthographic compensation. J Learn Disabil. 1999;32(5):417–28.

    PubMed  Article  Google Scholar 

  139. 139.

    Wimmer H, Mayringer H, Raberger T. Reading and dual-task balancing: evidence against the automatization deficit explanation of developmental dyslexia. J Learn Disabil. 1999;32:473–8.

    PubMed  CAS  Article  Google Scholar 

  140. 140.

    Raberger T, Wimmer H. On the automaticity/cerebellar deficit hypothesis of dyslexia: balancing and continuous rapid naming in dyslexics and ADHD children. Neuropsychologia. 2003;41(11):1493–7.

    PubMed  Article  Google Scholar 

  141. 141.

    Ramus F, Rosen S, Dakin SC, Day BL, Castellote JM, White S, et al. Theories of developmental dyslexia: insights from a multiple case study of dyslexic adults. Brain. 2003;126(Pt 4):841–65.

    PubMed  Article  Google Scholar 

  142. 142.

    Stoodley CJ, Fawcett AJ, Nicolson RI, Stein JF. Balancing and pointing tasks in dyslexic and control adults. Dyslexia. 2006;12(4):276–88.

    PubMed  Article  Google Scholar 

  143. 143.

    Savage R. Motor skills, automaticity and developmental dyslexia: a review of the research literature. Read Writing. 2004;17:301–24.

    Article  Google Scholar 

  144. 144.

    Rochelle K, Talcott J. Impaired balance in developmental dyslexia? A meta-analysis of the contending evidence. J Child Psych Psychiatry. 2006;47:1159–66.

    Article  Google Scholar 

  145. 145.

    Velay JL, Daffaure V, Giraud K, Habib M. Interhemispheric sensorimotor integration in pointing movements: a study on dyslexic adults. Neuropsychologia. 2002;40(7):827–34.

    PubMed  Article  Google Scholar 

  146. 146.

    Catts H, Gillispie M, Leonard L, Kail R, Miller C. The role of speed of processing, rapid naming, and phonological awareness in reading achievement. J Learn Disabil. 2002;35:509–24.

    PubMed  Article  Google Scholar 

  147. 147.

    Yeo C, Hesslow G. Cerebellum and conditioned reflexes. Trends Cogn Sci. 1998;2(9):322–30.

    PubMed  CAS  Article  Google Scholar 

  148. 148.

    Nicolson R, Daum I, Schugens M, Fawcett A, Schultz A. Eyeblink conditioning indicates cerebellar abnormality in dyslexia. Exp Brain Res. 2002;143:42–50.

    PubMed  Article  Google Scholar 

  149. 149.

    Coffin JM, Baroody S, Schneider K, O’Neill J. Impaired cerebellar learning in children with prenatal alcohol exposure: a comparative study of eyeblink conditioning in children with ADHD and dyslexia. Cortex. 2005;41(3):389–98.

    PubMed  Article  Google Scholar 

  150. 150.

    Sperling A, Lu Z-L, Manis F. Slower implicit categorical learning in adult poor readers. Ann Dyslexia. 2004;54(2):281–303.

    PubMed  Article  Google Scholar 

  151. 151.

    Jimenez-Fernandez G, Vaquero JM, Jimenez L, Defior S. Dyslexic children show deficits in implicit sequence learning, but not in explicit sequence learning or contextual cueing. Ann Dyslexia. 2011;61(1):85–110.

    PubMed  Article  Google Scholar 

  152. 152.

    Kelly S, Griffiths S, Frith U. Evidence for implicit sequence learning in dyslexia. Dyslexia. 2002;8(1):43–52.

    PubMed  Article  Google Scholar 

  153. 153.

    Waber D, Marcus D, Forbes P, Bellinger D, Weiler M, Sorenson L, et al. Motor sequence learning and reading ability: is poor reading associated with sequencing deficits? J Exp Child Psychol. 2003;84:338–54.

    PubMed  Article  Google Scholar 

  154. 154.

    Russeler J, Gerth I, Munte TF. Implicit learning is intact in adult developmental dyslexic readers: evidence from the serial reaction time task and artificial grammar learning. J Clin Exp Neuropsychol. 2006;28(5):808–27.

    PubMed  Article  Google Scholar 

  155. 155.

    Bennett IJ, Romano JC, Howard Jr JH, Howard DV. Two forms of implicit learning in young adults with dyslexia. Ann N Y Acad Sci. 2008;1145:184–98.

    PubMed  Article  Google Scholar 

  156. 156.

    Boada R, Pennington B. Deficient implicit phonological representations in children with dyslexia. J Exp Child Psychol. 2006;95:153–93.

    PubMed  Article  Google Scholar 

  157. 157.

    Ramus F. Developmental dyslexia: specific phonological deficit or general sensorimotor dysfunction? Curr Opin Neurobiol. 2003;13(2):212–8.

    PubMed  CAS  Article  Google Scholar 

  158. 158.

    Rochelle KS, Witton C, Talcott JB. Symptoms of hyperactivity and inattention can mediate deficits of postural stability in developmental dyslexia. Exp Brain Res. 2009;192(4):627–33.

    PubMed  Article  Google Scholar 

  159. 159.

    Reynolds D, Nicolson R, Hambly H. Evaluation of an exercise-based treatment for children with reading difficulties. Dyslexia. 2003;9:48–71.

    PubMed  Article  Google Scholar 

  160. 160.

    Richards I, Moores E, Witton C, Reddy P, Rippon G, Rochelle K, et al. Science, sophistry and ‘commercial sensitivity’: comments on ‘Evaluation of an exercise-based treatment for children with reading difficulties’, by Reynolds, Nicolson and Hambly. Dyslexia. 2003;9:146–50.

    PubMed  Article  Google Scholar 

  161. 161.

    Snowling MJ, Hulme C. A critique of claims from Reynolds, Nicolson & Hambly (2003) that DDAT is an effective treatment for children with reading difficulties—‘lies, damned lies and (inappropriate) statistics’? Dyslexia. 2003;9(2):127–33. discussion 34–5.

    PubMed  Article  Google Scholar 

  162. 162.

    Reynolds D, Nicolson RI. Follow-up of an exercise-based treatment for children with reading difficulties. Dyslexia. 2007;13(2):78–96.

    PubMed  Article  Google Scholar 

  163. 163.

    Rack J, Snowling M, Hulme C, Gibbs S. No evidence that an exercise-based treatment program (DDAT) has specific benefits for children with reading difficulties. Dyslexia. 2007;13:97–104.

    PubMed  Article  Google Scholar 

  164. 164.

    Joly-Pottuz B, Mercier M, Leynaud A, Habib M. Combined auditory and articulatory training improves phonological deficit in children with dyslexia. Neuropsychol Rehabil. 2008;18(4):402–29.

    PubMed  Article  Google Scholar 

  165. 165.

    Barth AE, Denton CA, Stuebing KK, Fletcher JM, Cirino PT, Francis DJ, et al. A test of the cerebellar hypothesis of dyslexia in adequate and inadequate responders to reading intervention. J Int Neuropsychol Soc. 2010;16(3):526–36.

    PubMed  Article  Google Scholar 

  166. 166.

    Shaywitz BA, Shaywitz SE, Blachman BA, Pugh KR, Fulbright RK, Skudlarski P, et al. Development of left occipitotemporal systems for skilled reading in children after a phonologically- based intervention. Biol Psychiatry. 2004;55(9):926–33.

    PubMed  Article  Google Scholar 

  167. 167.

    Aylward EH, Richards TL, Berninger VW, Nagy WE, Field KM, Grimme AC, et al. Instructional treatment associated with changes in brain activation in children with dyslexia. Neurology. 2003;61(2):212–9.

    PubMed  CAS  Article  Google Scholar 

  168. 168.

    Eden GF, Jones KM, Cappell K, Gareau L, Wood FB, Zeffiro TA, et al. Neural changes following remediation in adult developmental dyslexia. Neuron. 2004;44(3):411–22.

    PubMed  CAS  Article  Google Scholar 

  169. 169.

    Krafnick AJ, Flowers DL, Napoliello EM, Eden GF. Gray matter volume changes following reading intervention in dyslexic children. Neuroimage. 2011;57(3):733–41.

    PubMed  Article  Google Scholar 

  170. 170.

    Hoeft F, McCandliss BD, Black JM, Gantman A, Zakerani N, Hulme C, et al. Neural systems predicting long-term outcome in dyslexia. Proc Natl Acad Sci USA. 2011;108(1):361–6.

    PubMed  CAS  Article  Google Scholar 

  171. 171.

    Manto M, Bower JM, Conforto AB, Delgado-Garcia JM, da Guarda SN, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control-the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11(2):457–87.

    PubMed  Article  Google Scholar 

  172. 172.

    Marien P, Verhoeven J, Brouns R, De Witte L, Dobbeleir A, De Deyn PP. Apraxic agraphia following a right cerebellar hemorrhage. Neurology. 2007;69(9):926–9.

    PubMed  CAS  Article  Google Scholar 

  173. 173.

    De Smet HJ, Engelborghs S, Paquier PF, De Deyn PP, Marien P. Cerebellar-induced apraxic agraphia: a review and three new cases. Brain Cogn. 2011;76(3):424–34.

    PubMed  Article  Google Scholar 

  174. 174.

    Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6(3):202–13.

    PubMed  Article  Google Scholar 

  175. 175.

    O’Hare A, Khalid S. The association of abnormal cerebellar function in children with developmental coordination disorder and reading difficulties. Dyslexia. 2002;8(4):234–48.

    PubMed  Article  Google Scholar 

  176. 176.

    Nicolson RI, Fawcett AJ. Developmental dyslexia, learning and the cerebellum. J Neural Transm Suppl. 2005;69:19–36.

    PubMed  Google Scholar 

  177. 177.

    Paracchini S, Scerri T, Monaco A. The genetic lexicon of dyslexia. Annu Rev Genomics Hum Genet. 2007;8:57–79.

    PubMed  CAS  Article  Google Scholar 

  178. 178.

    Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage. 2012;59(2):1560–70.

    PubMed  Article  Google Scholar 

Download references

Conflict of Interest Statement

We confirm that there is no conflict of interest, financial or otherwise, which might bias this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Catherine J. Stoodley.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stoodley, C.J., Stein, J.F. Cerebellar Function in Developmental Dyslexia. Cerebellum 12, 267–276 (2013). https://doi.org/10.1007/s12311-012-0407-1

Download citation

Keywords

  • Cerebellum
  • Developmental dyslexia
  • Magnetic resonance imaging
  • Reading
  • Implicit learning