The Cerebellum

, Volume 11, Issue 4, pp 925–930 | Cite as

Volumetric Analysis of Cerebellum in Short-Track Speed Skating Players

  • In Sung Park
  • Nam Joon Lee
  • Tae-Young Kim
  • Jin-Hoon Park
  • Yu-Mi Won
  • Yong-Ju Jung
  • Jin-Hwan Yoon
  • Im Joo Rhyu
Original Paper

Abstract

The cerebellum is associated with balance control and coordination, which might be important for gliding on smooth ice at high speeds. A number of case studies have shown that cerebellar damage induces impaired balance and coordination. As a positive model, therefore, we investigated whether plastic changes in the volumes of cerebellar subregions occur in short-track speed skating players who must have extraordinary abilities of balance and coordination, using three-dimensional magnetic resonance imaging volumetry. The manual tracing was performed and the volumes of cerebellar hemisphere and vermian lobules were compared between short-track speed skating players (n = 16) and matched healthy controls (n = 18). We found larger right cerebellar hemisphere volume and vermian lobules VI–VII (declive, folium, and tuber) in short-track speed skating players in comparison with the matched controls. The finding suggests that the specialized abilities of balance and coordination are associated with structural plasticity of the right hemisphere of cerebellum and vermian VI–VII and these regions play an essential role in balance and coordination.

Keywords

Balance Coordination Magnetic resonance imaging Sports 

References

  1. 1.
    Holmes G. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain. 1917;40(4):461–535.CrossRefGoogle Scholar
  2. 2.
    Goodkin HP, Keating JG, Martin TA, Thach WT. Preserved simple and impaired compound movement after infarction in the territory of the superior cerebellar artery. Can J Neurol Sci. 1993;20(3):93–104.Google Scholar
  3. 3.
    Stein JF, Glickstein M. Role of the cerebellum in visual guidance of movement. Physiol Rev. 1992;72(4):967–1017.PubMedGoogle Scholar
  4. 4.
    Scholz J, Klein MC, Behrens TE, Johansen-Berg H. Training induces changes in white-matter architecture. Nat Neurosci. 2009;12(11):1370–1.PubMedCrossRefGoogle Scholar
  5. 5.
    Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: changes in grey matter induced by training. Nature. 2004;427(6972):311–2.PubMedCrossRefGoogle Scholar
  6. 6.
    Park IS, Lee KJ, Han JW, Lee NJ, Lee WT, Park KA, et al. Experience-dependent plasticity of cerebellar vermis in basketball players. Cerebellum. 2009;8(3):334–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Park IS, Lee KJ, Han JW, Lee NJ, Lee WT, Park KA, et al. Basketball training increases striatum volume. Hum Mov Sci. 2011;30(1):56–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Park IS, Han JW, Lee KJ, Lee NJ, Lee WT, Park KA, et al. Evaluation of morphological plasticity in the cerebella of basketball players with MRI. J Korean Med Sci. 2006;21(2):342–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Lee NJ, Park IS, Koh I, Jung TW, Rhyu IJ. No volume difference of medulla oblongata between young and old Korean people. Brain Res. 2009;1276:77–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Raz N, Gunning-Dixon F, Head D, Williamson A, Acker JD. Age and sex differences in the cerebellum and the ventral pons: a prospective MR study of healthy adults. AJNR Am J Neuroradiol. 2001;22(6):1161–7.PubMedGoogle Scholar
  11. 11.
    Kusbeci OY, Bas O, Gocmen-Mas N, Karabekir HS, Yucel A, Ertekin T, et al. Evaluation of cerebellar asymmetry in Alzheimer's disease: a stereological study. Dement Geriatr Cogn Disord. 2009;28(1):1–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Szeszko PR, Gunning-Dixon F, Ashtari M, Snyder PJ, Lieberman JA, Bilder RM. Reversed cerebellar asymmetry in men with first-episode schizophrenia. Biol Psychiatry. 2003;53(5):450–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Ilg W, Giese MA, Gizewski ER, Schoch B, Timmann D. The influence of focal cerebellar lesions on the control and adaptation of gait. Brain. 2008;131(Pt 11):2913–27.PubMedCrossRefGoogle Scholar
  14. 14.
    Ivry RB, Keele SW, Diener HC. Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res. 1988;73(1):167–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30(1):36–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Bastian A, Thach W. Structure and function of the cerebellum. In: Manto M, Pandolfo M, editors. The cerebellum and its disorders. New York: Cambridge University Press; 2002. p. 49–68.Google Scholar
  17. 17.
    Courville J. Somatotopical organization of the projection from the nucleus interpositus anterior of the cerebellum to the red nucleus. An experimental study in the cat with silver impregnation methods. Exp Brain Res. 1966;2(3):191–215.PubMedCrossRefGoogle Scholar
  18. 18.
    Flumerfelt BA, Otabe S, Courville J. Distinct projections to the red nucleus from the dentate and interposed nuclei in the monkey. Brain Res. 1973;50(2):408–14.PubMedCrossRefGoogle Scholar
  19. 19.
    Rosano C, Aizenstein HJ, Studenski S, Newman AB. A regions-of-interest volumetric analysis of mobility limitations in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2007;62(9):1048–55.PubMedCrossRefGoogle Scholar
  20. 20.
    Adams RD, Victor M. Principles of neurology. New York: McGraw-Hill; 1989.Google Scholar
  21. 21.
    Dichgans J, Diener HC. Clinical evidence for functional compartmentalization of the cerebellum. In: Bloedel JR, Dichgans J, Precht W, editors. Cerebellar functions. Berlin: Springer; 1984. p. 126–47.CrossRefGoogle Scholar
  22. 22.
    Debaere F, Swinnen SP, Béatse E, Sunaert S, Van Hecke P, Duysens J. Brain areas involved in interlimb coordination: a distributed network. Neuroimage. 2001;14(5):947–58.PubMedCrossRefGoogle Scholar
  23. 23.
    Nitschke MF, Kleinschmidt A, Wessel K, Frahm J. Somatotopic motor representation in the human anterior cerebellum. A high-resolution functional MRI study. Brain. 1996;119(Pt 3):1023–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Ouchi Y, Okada H, Yoshikawa E, Nobezawa S, Futatsubashi M. Brain activation during maintenance of standing postures in humans. Brain. 1999;122(Pt 2):329–38.PubMedCrossRefGoogle Scholar
  25. 25.
    Marple-Horvat DE, Criado JM. Rhythmic neuronal activity in the lateral cerebellum of the cat during visually guided stepping. J Physiol. 1999;518(Pt 2):595–603.PubMedCrossRefGoogle Scholar
  26. 26.
    Rabe K, Livne O, Gizewski ER, Aurich V, Beck A, Timmann D, et al. Adaptation to visuomotor rotation and force field perturbation is correlated to different brain areas in patients with cerebellar degeneration. J Neurophysiol. 2009;101(4):1961–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Floyer-Lea A, Matthews PM. Changing brain networks for visuomotor control with increased movement automaticity. J Neurophysiol. 2004;92(4):2405–12.PubMedCrossRefGoogle Scholar
  28. 28.
    Nitschke MF, Arp T, Stavrou G, Erdmann C, Heide W. The cerebellum in the cerebro-cerebellar network for the control of eye and hand movements—an fMRI study. Prog Brain Res. 2005;148:151–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Stephan T, Mascolo A, Yousry TA, Bense S, Brandt T, Dieterich M. Changes in cerebellar activation pattern during two successive sequences of saccades. Hum Brain Mapp. 2002;16(2):63–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Kralj-Hans I, Baizer JS, Swales C, Glickstein M. Independent roles for the dorsal paraflocculus and vermal lobule VII of the cerebellum in visuomotor coordination. Exp Brain Res. 2007;177(2):209–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci USA. 1990;87(14):5568–72.PubMedCrossRefGoogle Scholar
  32. 32.
    Anderson BJ, Alcantara AA, Greenough WT. Motor-skill learning: changes in synaptic organization of the rat cerebellar cortex. Neurobiol Learn Mem. 1996;66(2):221–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Kleim JA, Swain RA, Czerlanis CM, Kelly JL, Pipitone MA, Greenough WT. Learning-dependent dendritic hypertrophy of cerebellar stellate cells: plasticity of local circuit neurons. Neurobiol Learn Mem. 1997;67(1):29–33.PubMedCrossRefGoogle Scholar
  34. 34.
    Kleim JA, Pipitone MA, Czerlanis C, Greenough WT. Structural stability within the lateral cerebellar nucleus of the rat following complex motor learning. Neurobiol Learn Mem. 1998;69(3):290–306.PubMedCrossRefGoogle Scholar
  35. 35.
    Federmeier KD, Kleim JA, Greenough WT. Learning-induced multiple synapse formation in rat cerebellar cortex. Neurosci Lett. 2002;332(3):180–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • In Sung Park
    • 1
    • 2
    • 4
  • Nam Joon Lee
    • 3
  • Tae-Young Kim
    • 4
  • Jin-Hoon Park
    • 5
  • Yu-Mi Won
    • 4
  • Yong-Ju Jung
    • 5
  • Jin-Hwan Yoon
    • 2
  • Im Joo Rhyu
    • 1
  1. 1.Department of AnatomyKorea University College of MedicineSeoulSouth Korea
  2. 2.Department of Sports ScienceHan Nam UniversityDaejeonSouth Korea
  3. 3.Department of Diagnostic RadiologyKorea University College of MedicineSeoulSouth Korea
  4. 4.College of EducationHankuk University of Foreign StudiesSeoulSouth Korea
  5. 5.Department of Physical EducationKorea UniversitySeoulSouth Korea

Personalised recommendations