Herculano-Houzel S, Lent R. Isotropic fractionator: a simple, rapid method for the quantification of total cell numbers in the brain. J Neurosci. 2005;25:2518–21.
PubMed
Article
CAS
Google Scholar
Mugnaini E, Sekerkova G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain Res Rev. 2011;66(1–2):220–45.
PubMed
Article
CAS
Google Scholar
Ramon y Cajal S. Sur l’origine et la direction des prolongations nerveuses de la couche moléculaire du cervelet. Internat Mschr Anat Physiol. 1889;7:12–31.
D’Angelo E. Cerebellar granule cells. In: Manto M, Gruol D, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. Berlin: Springer; 2012.
Google Scholar
Seja P, Schonewille M, Spitzmaul G, Badura A, Klein I, Rudhard Y, Wisden W, Hübner CA, De Zeeuw CI, Jentsch TJ. Raising cytosolic Cl(-) in cerebellar granule cells affects their excitability and vestibulo-ocular learning. EMBO J. 2012;doi:10.1038/emboj.2011.488.
Hamori J, Somogyi J. Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscope study. J Comp Neurol. 1983;220:365–77.
PubMed
Article
CAS
Google Scholar
D’Angelo E, De Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2009;32(1):30–40.
PubMed
Article
Google Scholar
Eccles JC, Ito M, Szentagothai J. The cerebellum as a neural machine. Berlin: Springer; 1967.
Google Scholar
Kistler WM, De Zeeuw CI. Time windows and reverberating loops: a reverse-engineering approach to cerebellar function. Cerebellum. 2003;2:44–54.
PubMed
Article
Google Scholar
Canterini S, Bosco A, Carletti V, Fuso A, Curci A, Mangia F, Fiorenza MT. Subcellular TSC22D4 localization in cerebellum granule neurons of the mouse depends on development and differentiation. Cerebellum. 2012; in press.
Kilpatrick DL, Wang W, Gronostajski R, Litwack ED. Nuclear factor I and cerebellar granule neuron development: an intrinsic-extrinsic interplay. Cerebellum. 2012; in press.
Contestabile A. Role of nitric oxide in cerebellar development and function: focus on granule neurons. Cerebellum. 2012; in press.
Courjaret R, Miras-Portugal MT, Deitmer JW. Purinergic modulation of granule cells. Cerebellum. 2012; in press.
Hirano T. Glutamate-receptor-like molecule GluRdelta2 involved in synapse formation at parallel fiber-Purkinje neuron synapses. Cerebellum. 2012; in press.
Matsuda K, Yuzaki M. Cbln1 and the Delta2 glutamate receptor—an orphan ligand and an orphan receptor find their partners. Cerebellum. 2012; in press.
Saftenku EE. Models of calcium dynamics in cerebellar granule cells. Cerebellum. 2012. In press.
Saftenku EE. Effects of calretinin on Ca(2+) signals in cerebellar granule cells: implications of cooperative Ca(2+) binding. Cerebellum. 2012; in press.
Zhang W, Linden DJ. Calcium influx measured at single presynaptic boutons of cerebellar granule cell ascending axons and parallel fibers. Cerebellum. 2012; in press.
Strackx E, Gantert M, Moers V, van Kooten IA, Rieke R, Hürter H, Lemmens MA, Steinbusch HW, Zimmermann LJ, Vles JS, Garnier Y, Gavilanes AW, Kramer BW. Increased number of cerebellar granule cells and astrocytes in the internal granule layer in sheep following prenatal intra-amniotic injection of lipopolysaccharide. Cerebellum. 2012; in press.
Luo J. Mechanisms of ethanol-induced death of cerebellar granule cells. Cerebellum. 2012; in press.
Hall CN, Garthwaite J. What is the real physiological NO concentration in vivo? Nitric Oxide. 2009;21:92–103.
PubMed
Article
CAS
Google Scholar
Feil R, Hartmann J, Luo C, Wolfsgruber W, Schilling K, Feil S, et al. Impairment of LTD and cerebellar learning by Purkinje cell-specific ablation of cGMP-dependent protein kinase I. J Cell Biol. 2003;163(2):295–302.
PubMed
Article
CAS
Google Scholar
Brockhaus J, Dressel D, Herold S, Deitmer JW. Purinergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices. Eur J Neurosci. 2004;19(8):2221–30.
PubMed
Article
Google Scholar
Dar MS, Mustafa SJ. Acute ethanol/cannabinoid-induced ataxia and its antagonism by oral/systemic/intracerebellar A1 adenosine receptor antisense in mice. Brain Res. 2002;957(1):53–60.
PubMed
Article
CAS
Google Scholar
Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, et al. Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell. 1995;81(2):245–52.
PubMed
Article
CAS
Google Scholar
Kato A, Yoshida T, Himeshima Y, Mishina M, Hirano T. Defective control and adaptation of reflex eye movements in mutant mice deficient in either the glutamate delta2 subunit or Purkinje cells. Eur J Neurosci. 2005;21(5):1315–26.
Article
Google Scholar
Lalouette A, Lohof A, Sotelo C, Guénet J, Mariani J. Neurobiological effects of a null mutation depend on genetic context: comparison between two hotfoot alleles of the delta-2 ionotropic glutamate receptor. Neuroscience. 2001;105(2):443–55.
PubMed
Article
CAS
Google Scholar
Le Guen MC, De Zeeuw CI. Presynaptic plasticity at cerebellar parallel fiber terminals. Funct Neurol. 2010;25(3):141–51.
PubMed
Google Scholar
Lahra MM, Jeffery HE. A fetal response to chorioamnionitis is associated with early survival after preterm birth. Am J Obstet Gynecol. 2004;190(1):147–51.
PubMed
Article
Google Scholar
Gilles FH, Averill Jr DR, Kerr CS. Neonatal endotoxin encephalopathy. Ann Neurol. 1977;2(1):49–56.
PubMed
Article
CAS
Google Scholar
Koziol LF, Budding DE, Chidekel D. Adaptation, expertise, and giftedness: towards an understanding of cortical, subcortical, and cerebellar network contributions. Cerebellum. 2010;9(4):499–529.
PubMed
Article
Google Scholar
Manto M. Cerebellar disorders. A practical approach to diagnosis and management. Cambridge: Cambride University Press; 2010.
Book
Google Scholar