Skip to main content

Diversity and Complexity of Roles of Granule Cells in the Cerebellar Cortex. Editorial

Abstract

The cerebellar granule cell, the most numerous neurons in the brain, forms the main excitatory neuron of the cerebellar cortical circuitry. Granule cells are synaptically connected with both mossy fibers and Golgi cells inside specialized structures called glomeruli, and thereby, they are subject to both feed-forward and feed-back inhibition. Their unique architecture with about four dendrites and a single axon ascending in the cerebellar cortex to bifurcate into two parallel fibers making synapses with Purkinje neurons has attracted numerous scientists. Recent advances show that they are much more than just relays of mossy fibers. They perform diverse and complex transformations in the spatiotemporal domain. This special issue highlights novel avenues in our understanding of the roles of this key neuronal population of the cerebellar cortex, ranging from developmental up to physiological and pathological points of view.

This is a preview of subscription content, access via your institution.

References

  1. Herculano-Houzel S, Lent R. Isotropic fractionator: a simple, rapid method for the quantification of total cell numbers in the brain. J Neurosci. 2005;25:2518–21.

    PubMed  Article  CAS  Google Scholar 

  2. Mugnaini E, Sekerkova G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain Res Rev. 2011;66(1–2):220–45.

    PubMed  Article  CAS  Google Scholar 

  3. Ramon y Cajal S. Sur l’origine et la direction des prolongations nerveuses de la couche moléculaire du cervelet. Internat Mschr Anat Physiol. 1889;7:12–31.

  4. D’Angelo E. Cerebellar granule cells. In: Manto M, Gruol D, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. Berlin: Springer; 2012.

    Google Scholar 

  5. Seja P, Schonewille M, Spitzmaul G, Badura A, Klein I, Rudhard Y, Wisden W, Hübner CA, De Zeeuw CI, Jentsch TJ. Raising cytosolic Cl(-) in cerebellar granule cells affects their excitability and vestibulo-ocular learning. EMBO J. 2012;doi:10.1038/emboj.2011.488.

  6. Hamori J, Somogyi J. Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscope study. J Comp Neurol. 1983;220:365–77.

    PubMed  Article  CAS  Google Scholar 

  7. D’Angelo E, De Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2009;32(1):30–40.

    PubMed  Article  Google Scholar 

  8. Eccles JC, Ito M, Szentagothai J. The cerebellum as a neural machine. Berlin: Springer; 1967.

    Google Scholar 

  9. Kistler WM, De Zeeuw CI. Time windows and reverberating loops: a reverse-engineering approach to cerebellar function. Cerebellum. 2003;2:44–54.

    PubMed  Article  Google Scholar 

  10. Canterini S, Bosco A, Carletti V, Fuso A, Curci A, Mangia F, Fiorenza MT. Subcellular TSC22D4 localization in cerebellum granule neurons of the mouse depends on development and differentiation. Cerebellum. 2012; in press.

  11. Kilpatrick DL, Wang W, Gronostajski R, Litwack ED. Nuclear factor I and cerebellar granule neuron development: an intrinsic-extrinsic interplay. Cerebellum. 2012; in press.

  12. Contestabile A. Role of nitric oxide in cerebellar development and function: focus on granule neurons. Cerebellum. 2012; in press.

  13. Courjaret R, Miras-Portugal MT, Deitmer JW. Purinergic modulation of granule cells. Cerebellum. 2012; in press.

  14. Hirano T. Glutamate-receptor-like molecule GluRdelta2 involved in synapse formation at parallel fiber-Purkinje neuron synapses. Cerebellum. 2012; in press.

  15. Matsuda K, Yuzaki M. Cbln1 and the Delta2 glutamate receptor—an orphan ligand and an orphan receptor find their partners. Cerebellum. 2012; in press.

  16. Saftenku EE. Models of calcium dynamics in cerebellar granule cells. Cerebellum. 2012. In press.

  17. Saftenku EE. Effects of calretinin on Ca(2+) signals in cerebellar granule cells: implications of cooperative Ca(2+) binding. Cerebellum. 2012; in press.

  18. Zhang W, Linden DJ. Calcium influx measured at single presynaptic boutons of cerebellar granule cell ascending axons and parallel fibers. Cerebellum. 2012; in press.

  19. Strackx E, Gantert M, Moers V, van Kooten IA, Rieke R, Hürter H, Lemmens MA, Steinbusch HW, Zimmermann LJ, Vles JS, Garnier Y, Gavilanes AW, Kramer BW. Increased number of cerebellar granule cells and astrocytes in the internal granule layer in sheep following prenatal intra-amniotic injection of lipopolysaccharide. Cerebellum. 2012; in press.

  20. Luo J. Mechanisms of ethanol-induced death of cerebellar granule cells. Cerebellum. 2012; in press.

  21. Hall CN, Garthwaite J. What is the real physiological NO concentration in vivo? Nitric Oxide. 2009;21:92–103.

    PubMed  Article  CAS  Google Scholar 

  22. Feil R, Hartmann J, Luo C, Wolfsgruber W, Schilling K, Feil S, et al. Impairment of LTD and cerebellar learning by Purkinje cell-specific ablation of cGMP-dependent protein kinase I. J Cell Biol. 2003;163(2):295–302.

    PubMed  Article  CAS  Google Scholar 

  23. Brockhaus J, Dressel D, Herold S, Deitmer JW. Purinergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices. Eur J Neurosci. 2004;19(8):2221–30.

    PubMed  Article  Google Scholar 

  24. Dar MS, Mustafa SJ. Acute ethanol/cannabinoid-induced ataxia and its antagonism by oral/systemic/intracerebellar A1 adenosine receptor antisense in mice. Brain Res. 2002;957(1):53–60.

    PubMed  Article  CAS  Google Scholar 

  25. Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, et al. Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell. 1995;81(2):245–52.

    PubMed  Article  CAS  Google Scholar 

  26. Kato A, Yoshida T, Himeshima Y, Mishina M, Hirano T. Defective control and adaptation of reflex eye movements in mutant mice deficient in either the glutamate delta2 subunit or Purkinje cells. Eur J Neurosci. 2005;21(5):1315–26.

    Article  Google Scholar 

  27. Lalouette A, Lohof A, Sotelo C, Guénet J, Mariani J. Neurobiological effects of a null mutation depend on genetic context: comparison between two hotfoot alleles of the delta-2 ionotropic glutamate receptor. Neuroscience. 2001;105(2):443–55.

    PubMed  Article  CAS  Google Scholar 

  28. Le Guen MC, De Zeeuw CI. Presynaptic plasticity at cerebellar parallel fiber terminals. Funct Neurol. 2010;25(3):141–51.

    PubMed  Google Scholar 

  29. Lahra MM, Jeffery HE. A fetal response to chorioamnionitis is associated with early survival after preterm birth. Am J Obstet Gynecol. 2004;190(1):147–51.

    PubMed  Article  Google Scholar 

  30. Gilles FH, Averill Jr DR, Kerr CS. Neonatal endotoxin encephalopathy. Ann Neurol. 1977;2(1):49–56.

    PubMed  Article  CAS  Google Scholar 

  31. Koziol LF, Budding DE, Chidekel D. Adaptation, expertise, and giftedness: towards an understanding of cortical, subcortical, and cerebellar network contributions. Cerebellum. 2010;9(4):499–529.

    PubMed  Article  Google Scholar 

  32. Manto M. Cerebellar disorders. A practical approach to diagnosis and management. Cambridge: Cambride University Press; 2010.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Manto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manto, M., De Zeeuw, C.I. Diversity and Complexity of Roles of Granule Cells in the Cerebellar Cortex. Editorial. Cerebellum 11, 1–4 (2012). https://doi.org/10.1007/s12311-012-0365-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-012-0365-7

Keywords

  • Nitric Oxide
  • Granule Cell
  • Cerebellar Cortex
  • Mossy Fiber
  • Cerebellar Granule Cell