Skip to main content

Advertisement

Log in

From Movement to Thought: Executive Function, Embodied Cognition, and the Cerebellum

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

This paper posits that the brain evolved for the control of action rather than for the development of cognition per se. We note that the terms commonly used to describe brain–behavior relationships define, and in many ways limit, how we conceptualize and investigate them and may therefore constrain the questions we ask and the utility of the “answers” we generate. Many constructs are so nonspecific and over-inclusive as to be scientifically meaningless. “Executive function” is one such term in common usage. As the construct is increasingly focal in neuroscience research, defining it clearly is critical. We propose a definition that places executive function within a model of continuous sensorimotor interaction with the environment. We posit that control of behavior is the essence of “executive function,” and we explore the evolutionary advantage conferred by being able to anticipate and control behavior with both implicit and explicit mechanisms. We focus on the cerebellum's critical role in these control processes. We then hypothesize about the ways in which procedural (skill) learning contributes to the acquisition of declarative (semantic) knowledge. We hypothesize how these systems might interact in the process of grounding knowledge in sensorimotor anticipation, thereby directly linking movement to thought and “embodied cognition.” We close with a discussion of ways in which the cerebellum instructs frontal systems how to think ahead by providing anticipatory control mechanisms, and we briefly review this model's potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cromwell HC, Panksepp J. Rethinking the cognitive revolution from a neural perspective: how overuse/misuse of the term ‘cognition’ and the neglect of affective controls in behavioral neuroscience could be delaying progress in understanding the BrainMind. Neurosci Biobehav Rev. 2011;35(9):2026–35.

    Article  PubMed  Google Scholar 

  2. van Schouwenburg MR, den Ouden HE, Cools R. The human basal ganglia modulate frontal-posterior connectivity during attention shifting. J Neurosci. 2010;30(29):9910–8.

    Article  PubMed  CAS  Google Scholar 

  3. Koziol LF, Budding DE, Chidekel D. Adaptation, expertise, and giftedness: towards an understanding of cortical, subcortical, and cerebellar network contributions. Cerebellum. 2010;9:499–529.

    Article  PubMed  Google Scholar 

  4. Ito M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 1993;16(11):448–50.

    Article  PubMed  CAS  Google Scholar 

  5. Loring DW, Meador KJ. INS dictionary of neuropsychology. USA: Oxford University Press; 1999.

    Google Scholar 

  6. Lezak MD, Loring DW. Neuropsychological assessment. USA: Oxford University Press; 2004.

    Google Scholar 

  7. Gualtieri CT. The contribution of the frontal lobes to a theory of psychopathology. In: Ratey JJ, editor. Neuropsychiatry of personality disorders. Cambridge: Blackwell Science; 1995. p. 149–171.

    Google Scholar 

  8. Dubois B, Pillon B, McKeith IG. Parkinson's disease with and without dementia and lewy body dementia. In: Miller EK, Cummings JL, editors. The human frontal lobes: functions and disorders. New York: The Guilford Press; 2007. p. 472–504.

    Google Scholar 

  9. Miller R. A theory of the basal ganglia and their disorders. Boca Raton: CRC; 2008.

    Google Scholar 

  10. Haber SN, Rauch SL. Neurocircuitry: a window into the networks underlying neuropsychiatric disease. Neuropsychopharmacology. 2010;35(1):1–3.

    Article  PubMed  Google Scholar 

  11. Ardila A. On the evolutionary origins of executive functions. Brain Cognit. 2008;68(1):92–9.

    Article  Google Scholar 

  12. Zelazo PD, Qu L, Muller U. Hot and cool aspects of executive function: relations in early development. In: Schneider W, Schumann-Hengsteler R, Sodian B, editors. Young children's cognitive development: interrelationships among executive functioning, working memory, verbal ability, and theory of mind. Mahwah: Lawrence Erlbaum; 2005. p. 71–93.

    Google Scholar 

  13. Salloway S, Malloy P, Cummings JL. The neuropsychiatry of limbic and subcortical disorders. Washington: American Psychiatric Press; 1997.

    Google Scholar 

  14. Frank MJ, O'Reilly RC, Curran T. When memory fails, intuition reigns: midazolam enhances implicit inference in humans. Psychol Sci. 2006;17(8):700–7.

    Article  PubMed  Google Scholar 

  15. Wan X, Nakatani H, Ueno K, Asamizuya T, Cheng K, Tanaka K. The neural basis of intuitive best next-move generation in board game experts. Science. 2011;331(6015):341.

    Article  PubMed  CAS  Google Scholar 

  16. Manrique HM, Call J. Spontaneous use of tools as straws in great apes. Anim Cognit 2011;14(2):213–26.

    Google Scholar 

  17. Cantalupo C, Hopkins W. The cerebellum and its contribution to complex tasks in higher primates: a comparative perspective. Cortex. 2010;46(7):821–30.

    Article  PubMed  Google Scholar 

  18. Ramnani N. Frontal lobe and posterior parietal contributions to the cortico-cerebellar system. Cerebellum. 2011. doi:10.1007/s12311-011-0272-3.

  19. Pezzulo G. Coordinating with the future: the anticipatory nature of representation. Minds and Machines. 2008;18(2):179–225.

    Article  Google Scholar 

  20. Pezzulo G. Grounding procedural and declarative knowledge in sensorimotor anticipation. Mind Lang. 2011;26(1):78–114.

    Google Scholar 

  21. Piaget J, Inhelder B. The psychology of the child. 1972.

  22. Barsalou LW. Grounded cognition: past, present, and future. Top Cogn Sci. 2010;2(3):322–7.

    Article  Google Scholar 

  23. Frank MJ, Doll BB, Oas-Terpstra J, Moreno F. Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nat Neurosci. 2009;12(8):1062–8.

    Article  PubMed  CAS  Google Scholar 

  24. Baddeley A. The central executive: a concept and some misconceptions. J Int Neuropsychol Soc. 1998;4(5):523–6.

    Article  PubMed  CAS  Google Scholar 

  25. Isoda M, Hikosaka O. Cortico basal ganglia mechanisms for overcoming innate, habitual and motivational behaviors. Eur J Neurosci. 2011;33(11):2058–69.

    Article  PubMed  Google Scholar 

  26. Houk JC, Bastianen C, Fansler D, Fishbach A, Fraser D, Reber PJ, et al. Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1573–83.

    Article  PubMed  CAS  Google Scholar 

  27. Bargh JA, Chartrand TL. The unbearable automaticity of being. Amer Psychol. 1999;54:462–79

    Article  Google Scholar 

  28. Bargh JA. The automaticity of everyday life. Wyer, Robert S Jr (Ed), et al. (1997). The automaticity of everyday life: Advances in social cognition, Vol. 10. (pp. 1-61). Mahwah, NJ, USA: Lawrence Erlbaum Associates, Inc. , Publishers. viii; 1997. 258 pp

  29. Lakoff G, Johnson M. Philosophy in the flesh. 77th ed. New York: Basic Books; 1999.

    Google Scholar 

  30. Saling LL, Phillips JG. Automatic behaviour: efficient not mindless. Brain Res Bull. 2007;73(1–3):1–20.

    Article  PubMed  CAS  Google Scholar 

  31. Imamizu H, Kawato M. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res. 2009;73(4):527–44.

    Article  PubMed  Google Scholar 

  32. Imamizu H. Prediction of sensorimotor feedback from the efference copy of motor commands: a review of behavioral and functional neuroimaging studies. Jpn Psychol Res. 2010;52(2):107–20.

    Article  Google Scholar 

  33. Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.

    Article  PubMed  CAS  Google Scholar 

  34. Cisek P, Kalaska JF. Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci. 2010;33:269–98.

    Article  PubMed  CAS  Google Scholar 

  35. Shadlen MN, Movshon JA. Synchrony unbound: review a critical evaluation of the temporal binding hypothesis. Neuron. 1999;24:67–77.

    Article  PubMed  CAS  Google Scholar 

  36. Singer W. Consciousness and the binding problem. Ann N Y Acad Sci. 2001;929(1):123–46.

    Article  PubMed  CAS  Google Scholar 

  37. Stout D. The evolution of cognitive control. Top Cogn Sci. 2010;2(4):614–30.

    Article  Google Scholar 

  38. Bloedel JR, Bracha V. Duality of cerebellar motor and cognitive functions. Int Rev Neurobiol. 1997;41:613.

    Article  PubMed  CAS  Google Scholar 

  39. Hazy TE, Frank MJ, O'Reilly RC. Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1601–13.

    Article  PubMed  Google Scholar 

  40. Frank MJ, Loughry B, O'Reilly RC. Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cognit Affect Behav Neurosci. 2001;1(2):137–60.

    Article  CAS  Google Scholar 

  41. Stocco A, Lebiere C, Anderson JR. Conditional routing of information to the cortex: a model of the basal ganglia's role in cognitive coordination. Psychol Rev. 2010;117(2):541.

    Article  PubMed  Google Scholar 

  42. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.

    Article  PubMed  CAS  Google Scholar 

  43. Jacob F. Evolution and tinkering. Science. 1977;196(4295):1161–6.

    Article  PubMed  CAS  Google Scholar 

  44. Martin A. The representation of object concepts in the brain. Annu Rev Psychol. 2007;58:25–45.

    Article  PubMed  Google Scholar 

  45. Freeman JB, Dale R, Farmer TA. Hand in motion reveals mind in motion. Front Psychol. 2011;2:59.

    Article  PubMed  Google Scholar 

  46. Valyear KF, Chapman CS, Gallivan JP, Mark RS, Culham JC. To use or to move: goal-set modulates priming when grasping real tools. Exp Brain Res 2011;212(1):125–42

    Google Scholar 

  47. Hendriks-Jansen H. Catching ourselves in the act: situated activity, interactive emergence, evolution, and human thought. Cambridge: MIT; 1996.

    Google Scholar 

  48. Freeman JB, Ambady N. A dynamic interactive theory of person construal. Psychol Rev. 2011;118(2):247.

    Article  PubMed  Google Scholar 

  49. Ito M. The cerebellum: brain for an implicit self. Upper Saddle River: FT Press; 2011.

    Google Scholar 

  50. Heilman KM, Rothi LJG. Apraxia. In: Heilman KM, Valenstein E, editors. Clinical neuropsychology. 4th ed. New York: Oxford University Press; 2003. p. 215–35.

    Google Scholar 

  51. Barsalou LW. Grounded cognition. Annu Rev Psychol. 2008;59:617–45.

    Article  PubMed  Google Scholar 

  52. Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey MJ. The mechanics of embodiment: a dialog on embodiment and computational modeling. Front Psychol. 2011;2:5.

    Google Scholar 

  53. Milner AD, Goodale MA. Two visual systems re-viewed. Neuropsychologia. 2008;46(3):774–85.

    Article  PubMed  CAS  Google Scholar 

  54. Njiokiktjien C. Developmental dyspraxias: assessment and differential diagnosis. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge: John Libbey Eurotext; 2010. p. 157–86.

    Google Scholar 

  55. Kaldy, Leslie AM. Identification of objects in 9 month old infants: integrating “what” and “where” information. Dev Sci. 2003;6(3):360–73.

    Article  Google Scholar 

  56. Doll BB, Frank MJ. The basal ganglia in reward and decision making: computational models and empirical studies. Handbook of Reward and Decision Making. 2009;399:399–425.

    Article  Google Scholar 

  57. Sheth SA, Abuelem T, Gale JT, Eskandar EN. Basal ganglia neurons dynamically facilitate exploration during associative learning. J Neurosci. 2011;31(13):4878.

    Article  PubMed  CAS  Google Scholar 

  58. Heekeren HR, Wartenburger I, Marschner A, Mell T, Villringer A, Reischies FM. Role of ventral striatum in reward-based decision making. NeuroReport. 2007;18(10):951.

    Article  PubMed  Google Scholar 

  59. Haber SN, Kim KS, Mailly P, Calzavara R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci. 2006;26(32):8368–76.

    Article  PubMed  CAS  Google Scholar 

  60. Cisek P, Kalaska JF. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron. 2005;45(5):801–14.

    Article  PubMed  CAS  Google Scholar 

  61. Thach WT. Context-response linkage. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 600–12.

    Google Scholar 

  62. Kinsbourne M, Jordan JS. Embodied anticipation: a neurodevelopmental interpretation. Discourse Process. 2009;46(2):103–26.

    Article  Google Scholar 

  63. Smaers JB, Steele J, Zilles K. Modeling the evolution of cortico cerebellar systems in primates. Ann NY Acad Sci. 2011;1225(1):176–90.

    Article  PubMed  Google Scholar 

  64. Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.

    Article  PubMed  CAS  Google Scholar 

  65. Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443.

    Article  PubMed  CAS  Google Scholar 

  66. Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. NeuroImage. 2010;49(3):2045–52.

    Article  PubMed  CAS  Google Scholar 

  67. Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JL, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex. 2006;16(6):811–8.

    Article  PubMed  Google Scholar 

  68. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31(2–3):236–50.

    Article  PubMed  CAS  Google Scholar 

  69. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.

    PubMed  CAS  Google Scholar 

  70. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  PubMed  CAS  Google Scholar 

  71. Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum 2011 (in press)

  72. Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Marien P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110(8):763–73.

    Article  PubMed  Google Scholar 

  73. Balsters JH, Ramnani N. Symbolic representations of action in the human cerebellum. NeuroImage. 2008;43(2):388–98.

    Article  PubMed  CAS  Google Scholar 

  74. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22.

    Article  PubMed  CAS  Google Scholar 

  75. Herculano-Houzel S. Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat. 2010;4:12.

    PubMed  Google Scholar 

  76. Shadmehr R, de Xivry JJ Orban, Xu-Wilson M, Shih TY. Temporal discounting of reward and the cost of time in motor control. J Neurosci. 2010;30(31):10507–16.

    Article  PubMed  CAS  Google Scholar 

  77. Ito M. Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.

    Article  PubMed  Google Scholar 

  78. Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Ungerleider LG. Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci USA. 2002;99(2):1017.

    Article  PubMed  CAS  Google Scholar 

  79. Galea JM, Vazquez A, Pasricha N, Orban de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cerebr Cortex 2010;21(8):1761–70

    Google Scholar 

  80. Kawato M, Furukawa K, Suzuki R. A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern. 1987;57(3):169–85.

    Article  PubMed  CAS  Google Scholar 

  81. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501.

    Article  PubMed  Google Scholar 

  82. Granziera C, Schmahmann JD, Hadjikhani N, Meyer H, Meuli R, Wedeen V, et al. Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PLoS One. 2009;4(4):e5101.

    Article  PubMed  CAS  Google Scholar 

  83. Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47(1):59–80.

    Article  PubMed  Google Scholar 

  84. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.

    Article  PubMed  Google Scholar 

  85. Hu D, Shen H, Zhou Z. Functional asymmetry in the cerebellum: a brief review. Cerebellum. 2008;7(3):304–13.

    Article  PubMed  Google Scholar 

  86. Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum. 2010;9(1):22–8.

    Article  PubMed  Google Scholar 

  87. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9.

    Article  PubMed  Google Scholar 

  88. Kuper M, Dimitrova A, Thurling M, Maderwald S, Roths J, Elles HG, et al. Evidence for a motor and a non-motor domain in the human dentate nucleus—an fMRI study. NeuroImage. 2011;54(4):2612–22.

    Article  PubMed  CAS  Google Scholar 

  89. Thurling M, Kuper M, Stefanescu R, Maderwald S, Gizewski ER, Ladd ME, et al. Activation of the dentate nucleus in a verb generation task: a 7T MRI study. Neuroimage 2011 (in press) uncorrected proof

  90. Ambrose SH. Paleolithic technology and human evolution. Science. 2001;291(5509):1748.

    Article  PubMed  CAS  Google Scholar 

  91. Ambrose SH. Coevolution of composite-tool technology, constructive memory, and language: implications for the evolution of modern human behavior. Curr Anthropol. 2010;51(S1):S135–47.

    Google Scholar 

  92. Stout D, Chaminade T. Making tools and making sense: complex, intentional behaviour in human evolution. Camb Archaeol J. 2009;19(01):85–96.

    Article  Google Scholar 

  93. Langbroek M. Trees and ladders: a critique of the theory of human cognitive and behavioural evolution in Palaeolithic archaeology. Quaternary International, (in press) corrected proof

  94. Johnson-Frey SH. The neural bases of complex tool use in humans. Trends Cognit Sci. 2004;8(2):71–8.

    Article  Google Scholar 

  95. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cerebr Cortex. 2009;19(10):2485–97.

    Article  Google Scholar 

  96. Imamizu H. Learning and switching of internal models for dexterous tool use. In: Danion F, Latash M, editors. Motor control: theories, experiments, and applications. New York: Oxford Press; 2011. p. 245–266.

    Google Scholar 

  97. Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M. Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci USA. 2003;100(9):5461–6.

    Article  PubMed  CAS  Google Scholar 

  98. Higuchi S, Imamizu H, Kawato M. Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex. 2007;43(3):350–8.

    Article  PubMed  Google Scholar 

  99. Imamizu H, Kawato M. Neural correlates of predictive and postdictive switching mechanisms for internal models. J Neurosci. 2008;28(42):10751.

    Article  PubMed  CAS  Google Scholar 

  100. Imamizu H, Kuroda T, Yoshioka T, Kawato M. Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. J Neurosci. 2004;24(5):1173–81.

    Article  PubMed  CAS  Google Scholar 

  101. Dias-Ferreira E, Sousa N, Costa RM. Frontocerebellar connectivity: climbing through the inferior olive. Front Neurosci. 2010, 3:18.

    Google Scholar 

  102. Depue BE, Burgess GC, Willcutt EG, Bidwell L, Ruzic L, Banich MT. Symptom-correlated brain regions in young adults with combined-type ADHD: their organization, variability, and relation to behavioral performance. Psychiatr Res Neuroimaging. 2010;182(2):96–102.

    Article  Google Scholar 

  103. Durston S, van Belle J, de Zeeuw P. Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;69(12):1178–84.

    Article  PubMed  Google Scholar 

  104. Svensson H, Ziemke T. Embodied representation: what are the issues. In: Bara B, Barsalou L, Buccarelli E, editors. Proceedings of the 27th annual meeting of the Cognitive Science Society. NJ: Lawrence Erlbaum; 2005. p. 2116–2121.

    Google Scholar 

  105. Squire LR. Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem. 2004;82(3):171–7.

    Article  PubMed  Google Scholar 

  106. Poldrack RA, Clark J, Pare-Blagoev EJ, Shohamy D, Moyano JC, Myers C, et al. Interactive memory systems in the human brain. Synthesis. 2001;52:297–314.

    Google Scholar 

  107. Doya K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Network. 1999;12(7–8):961–74.

    Article  Google Scholar 

  108. Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.

    Article  PubMed  CAS  Google Scholar 

  109. Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci USA. 2010;107(18):8452–6.

    Article  PubMed  CAS  Google Scholar 

  110. Rogers TD, Dickson PE, Heck DH, Goldowitz D, Mittleman G, Blaha CD. Connecting the dots of the cerebro-cerebellar role in cognitive function: neuronal pathways for cerebellar modulation of dopamine release in the prefrontal cortex. Synapse. 2011;65(11):1204–12.

    Article  PubMed  CAS  Google Scholar 

  111. Jeannerod M. The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci. 1994;17(02):187–202.

    Article  Google Scholar 

  112. Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage. 2001;14(1):S103–9.

    Article  PubMed  CAS  Google Scholar 

  113. Wadsworth HM, Kana RK. Brain mechanisms of perceiving tools and imagining tool use acts: a functional MRI study. Neuropsychologia. 2011;49(7):1863–9.

    Article  PubMed  Google Scholar 

  114. Miall RC. Connecting mirror neurons and forward models. NeuroReport. 2003;14(17):2135.

    Article  PubMed  CAS  Google Scholar 

  115. Hotz-Boendermaker S, Hepp-Reymond MC, Curt A, Kollias SS. Movement observation activates lower limb motor networks in chronic complete paraplegia. Neurorehabil Neural Repair. 2011;25(5):469.

    Article  PubMed  Google Scholar 

  116. Johnson-Frey SH, Newman-Norland R, Grafton ST. A distributed network in the left cerebral hemisphere for planning everyday tool use actions. Cerebr Cortex. 2005;15(6):681–95.

    Article  Google Scholar 

  117. Zola SM. The neurobiology of recovered memory. In: Salloway SP, Malloy PF, Cummings JL, editors. The neuropsychiatry of limbic and subcortical disorders. Washington: American Psychiatric Press; 1997. p. 143–54.

    Google Scholar 

  118. Raj V, Bell MA. Cognitive processes supporting episodic memory formation in childhood: the role of source memory, binding, and executive functioning. Dev Rev. 2010;30(4):384–402.

    Article  Google Scholar 

  119. Bachevalier J, Malkova L, Beauregard M. Multiple memory systems: a neuropsychological and developmental perspective. In: Lyon GR, Krasnegor NA, editors. Attention, memory, and executive function. Baltimore: Brookes; 1996. p. 185–198.

    Google Scholar 

  120. Hayne H, Imuta K. Episodic memory in 3- and 4-year-old children. Dev Psychobiol. 2011;53(3):317–22.

    Article  PubMed  Google Scholar 

  121. Poore MA, Barlow SM. Suck predicts neuromotor integrity and developmental outcomes. Perspect Speech Sci Orofacial Disord. 2009;19(1):44.

    Article  Google Scholar 

  122. Piek JP, Dawson L, Smith LM, Gasson N. The role of early fine and gross motor development on later motor and cognitive ability. Hum Mov Sci. 2008;27(5):668–81.

    Article  PubMed  Google Scholar 

  123. Westendorp M, Hartman E, Houwen S, Smith J, Visscher C. The relationship between gross motor skills and academic achievement in children with learning disabilities. Research in developmental disabilities (in press) corrected proof; 2011.

  124. Largo RH, Fischer JE, Rousson V. Neuromotor development from kindergarten age to adolescence: developmental course and variability. Swiss Med Wkly. 2003;133(13/14):193–9.

    PubMed  CAS  Google Scholar 

  125. Gibson KR. Evolution of human intelligence: the roles of brain size and mental construction. Brain Behav Evol. 2002;59(1–2):10–20.

    Article  PubMed  Google Scholar 

  126. Blumenfeld H. Neuroanatomy through clinical cases. Sinauer Associates; 2002.

  127. Von Hofsten C. Action in development. Dev Sci. 2007;10(1):54–60.

    Article  Google Scholar 

  128. Von Hofsten C. Action, the foundation for cognitive development. Scand J Psychol. 2009;50(6):617–23.

    Article  Google Scholar 

  129. Lockman JJ. A perception-action perspective on tool use development. Child Dev. 2000;71(1):137–44.

    Article  PubMed  CAS  Google Scholar 

  130. Tomasello M, Carpenter M, Liszkowski U. A new look at infant pointing. Child Dev. 2007;78(3):705–22.

    Article  PubMed  Google Scholar 

  131. Want SC, Harris PL. Learning from other people's mistakes: causal understanding in learning to use a tool. Child Dev. 2001;72(2):431–43.

    Article  PubMed  CAS  Google Scholar 

  132. Piek JP. Infant motor development. Human Kinetics Publishers; 2006.

  133. Von Hofsten C. An action perspective on motor development. Trends Cogn Sci. 2004;8(6):266–72.

    Article  Google Scholar 

  134. Adolph KE, Berger SA. Motor development. In: Damon W, Lerner R, series editors; and Kuhn D, Siegler S, volume editors. Handbook of child psychology: Vol 2: Cognition, perception, and language (6th ed.) New York: Wiley; 2006. p. 161–213.

  135. Koziol LF, Budding DE. Subcortical structures and cognition: implications for neuropsychological assessment. New York: Springer; 2009.

    Google Scholar 

  136. Cotterill RM. Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: possible implications for cognition, consciousness, intelligence and creativity. Prog Neurobiol. 2001;64(1):1–33.

    Article  PubMed  CAS  Google Scholar 

  137. Hazy TE, Frank MJ, O'Reilly RC. Banishing the homunculus: making working memory work. Neuroscience. 2006;139(1):105–18.

    Article  PubMed  CAS  Google Scholar 

  138. Houk JC, Wise SP. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex. 1995;5(2):95–110.

    Article  PubMed  CAS  Google Scholar 

  139. Imamizu H, Kawato M. Cerebellar internal models: implications for the dexterous use of tools. Cerebellum. 2010;22:1–11.

    Google Scholar 

  140. Milner TE, Franklin DW, Imamizu H, Kawato M. Central control of grasp: manipulation of objects with complex and simple dynamics. NeuroImage. 2007;36(2):388–95.

    Article  PubMed  Google Scholar 

  141. Schultz J, Imamizu H, Kawato M, Frith CD. Activation of the human superior temporal gyrus during observation of goal attribution by intentional objects. J Cogn Neurosci. 2004;16(10):1695–705.

    Article  PubMed  Google Scholar 

  142. Panksepp J. Affective neuroscience: the foundations of human and animal emotions. USA: Oxford University Press; 2004.

    Google Scholar 

  143. De Quiros JB, Schrager, OL. Neuropsychological fundamentals in learning disabilities. Novato, CA: Academic Therapy; 1979.

  144. Rorke LB, Riggs HE. Myelination of the brain in the newborn. Philadelphia: Lippincott; 1969.

  145. Power JD, Fair DA, Schlaggar BL, Petersen SE. The development of human functional brain networks. Neuron. 2010;67(5):735–48.

    Article  PubMed  CAS  Google Scholar 

  146. Yakovlev PI, Lecours AR. The myelogenetic cycles of regional maturationh of the brain. In: Minkowski A, editor. Regional development of the brain in early life. Boston: Blackwell Scientific; 1967. p. 3–70.

    Google Scholar 

  147. Altman J, Bayer SA. Development of the cerebellar system: in relation to its evolution, structure, and functions. Boca Raton: CRC; 1997.

    Google Scholar 

  148. Giedd JN, Rapoport JL. Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron. 2010;67(5):728–34.

    Article  PubMed  CAS  Google Scholar 

  149. Barber AD, Srinivasan P, Joel SE, Caffo BS, Pekar JJ, Mostofsky SH. Motor “Dexterity”?: evidence that left hemisphere lateralization of motor circuit connectivity is associated with better motor performance in children. Cerebral Cortex 2011 (in press)

  150. Petrini JR, Dias T, McCormick MC, Massolo ML, Green NS, Escobar GJ. Increased risk of adverse neurological development for late preterm infants. J Pediatr. 2009;154(2):169–76.

    Article  PubMed  Google Scholar 

  151. Bhutta AT, Cleves MA, Casey PH, Cradock MM, Anand KJ. Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA. 2002;288(6):728–37.

    Article  PubMed  Google Scholar 

  152. Riva D, Vago C, Usilla A, Treccani C, Pantaleoni C, D'Arrigo S, et al. The role of the cerebellum in higher cognitive and social functions in congenital and acquired diseases of developmental age. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge: John Libbey Eurotext; 2010. p. 133–44.

    Google Scholar 

  153. Limperopoulos C, Soul JS, Haidar H, Huppi PS, Bassan H, Warfield SK, et al. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics. 2005;116(4):844–50.

    Article  PubMed  Google Scholar 

  154. Messerschmidt A, Brugger PC, Boltshauser E, Zoder G, Sterniste W, Birnbacher R, et al. Disruption of cerebellar development: potential complication of extreme prematurity. AJNR Am J Neuroradiol. 2005;26(7):1659–67.

    PubMed  Google Scholar 

  155. Allin M, Matsumoto H, Santhouse AM, Nosarti C, AlAsady MH, Stewart AL, et al. Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain. 2001;124(Pt 1):60–6.

    Article  PubMed  CAS  Google Scholar 

  156. Allin MP, Salaria S, Nosarti C, Wyatt J, Rifkin L, Murray RM. Vermis and lateral lobes of the cerebellum in adolescents born very preterm. NeuroReport. 2005;16(16):1821–4.

    Article  PubMed  Google Scholar 

  157. Herbert JS, Eckerman CO, Goldstein RF, Stanton ME. Contrasts in infant classical eyeblink conditioning as a function of premature birth. Infancy. 2004;5(3):367–83.

    Article  Google Scholar 

  158. Kessenich M. Developmental outcomes of premature, low birth weight, and medically fragile infants. Newborn and Infant Nurs Rev. 2003;3(3):80–7.

    Article  Google Scholar 

  159. Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol. 2009;24(9):1085–104.

    Article  PubMed  Google Scholar 

  160. Tanskanen P, Valkama M, Haapea M, Barnes A, Ridler K, Miettunen J, et al. Is prematurity associated with adult cognitive outcome and brain structure? Pediatr Neurol. 2011;44(1):12–20.

    Article  PubMed  Google Scholar 

  161. Haldipur P, Bharti U, Alberti C, Sarkar C, Gulati G, Iyengar S, et al. Preterm delivery disrupts the developmental program of the cerebellum. PLoS One. 2011;6(8):e23449.

    Article  PubMed  CAS  Google Scholar 

  162. Connolly KJ, Dalgleish M. Individual patterns of tool use by infants. In: Kalverboer AF, Hopkins B, Geuze R, editors. Motor development in early and later childhood: longitudinal approaches. Cambridge: Cambridge University Press; 1993; p. 174–204.

    Chapter  Google Scholar 

  163. Voogd J, Schraa-Tam CKL, van der Geest JN, De Zeeuw CI. Visuomotor cerebellum in human and nonhuman primates. Cerebellum 2010;1–19.

  164. Blakemore SJ, Sirigu A. Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res. 2003;153(2):239–45.

    Article  PubMed  Google Scholar 

  165. Doron KW, Funk CM, Glickstein M. Fronto-cerebellar circuits and eye movement control: a diffusion imaging tractography study of human cortico-pontine projections. Brain Res. 2010;1307:63–71.

    Article  PubMed  CAS  Google Scholar 

  166. Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):44–56.

    Article  PubMed  CAS  Google Scholar 

  167. Li S, Ostwald D, Giese M, Kourtzi Z. Flexible coding for categorical decisions in the human brain. J Neurosci. 2007;27(45):12321.

    Article  PubMed  CAS  Google Scholar 

  168. Banich MT, Compton RJ. Cognitive neuroscience. 3rd ed. Belmont: Wadsworth; 2011.

    Google Scholar 

  169. Seger CA. The involvement of corticostriatal loops in learning across tasks, species, and methodologies. In: Groenewegen H, Berendse H, editors. The Basal Ganglia IX: Proceedings of the 9th Triennial Meeting of the International Basal Ganglia Society. New York: Springer; 2009.

    Google Scholar 

  170. Seger CA, Miller EK. Category learning in the brain. Annu Rev Neurosci. 2010;Jul 21;33(1).

  171. Schmahmann JD. The cerebellum and cognition. San Diego: Academic Press; 1997.

  172. Higuchi S, Chaminade T, Imamizu H, Kawato M. Shared neural correlates for language and tool use in Broca's area. NeuroReport. 2009;20(15):1376–81.

    Article  PubMed  Google Scholar 

  173. Stout D, Toth N, Schick K, Chaminade T. Neural correlates of Early Stone Age toolmaking: technology, language and cognition in human evolution. Philos Trans R Soc Lond B Biol Sci. 2008;363(1499):1939–49.

    Article  PubMed  Google Scholar 

  174. Vandervert LR, Koziol LF. How language came to be. Poster presented at the Second International Congress of the Society for Research on the Cerebellum. Chicago, IL. 2009.

  175. Ullman MT, Pierpont EI. Specific language impairment is not specific to language: the procedural deficit hypothesis. Cortex. 2005;41(3):399–433.

    Article  PubMed  Google Scholar 

  176. Ullman MT. Contributions of memory circuits to language: the declarative/procedural model. Cognition. 2004;92(1–2):231–70.

    Article  PubMed  Google Scholar 

  177. Glenberg AM, Gallese V. Action-based language: a theory of language acquisition, comprehension, and production. Cortex. 2011. doi:10.1016/j.cortex.2011.04.010.

  178. Gallese V, Rochat M, Cossu G, Sinigaglia C. Motor cognition and its role in the phylogeny and ontogeny of action understanding. Dev Psychol. 2009;45(1):103.

    Article  PubMed  Google Scholar 

  179. Mostofsky SH, Ewen JB. Altered connectivity and action model formation in autism is autism. Neuroscientist. 2011. doi:10.1177/1073858410392381.

  180. Schmahmann JD, Sherman JC. Cerebellar cognitive affective syndrome. Int Rev Neurobiol. 1997;41:433–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest Statement

The authors have no conflicts of interest associated with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard F. Koziol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koziol, L.F., Budding, D.E. & Chidekel, D. From Movement to Thought: Executive Function, Embodied Cognition, and the Cerebellum. Cerebellum 11, 505–525 (2012). https://doi.org/10.1007/s12311-011-0321-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0321-y

Keywords

Navigation