The Cerebellum

, Volume 11, Issue 2, pp 505–525 | Cite as

From Movement to Thought: Executive Function, Embodied Cognition, and the Cerebellum

  • Leonard F. KoziolEmail author
  • Deborah Ely Budding
  • Dana Chidekel


This paper posits that the brain evolved for the control of action rather than for the development of cognition per se. We note that the terms commonly used to describe brain–behavior relationships define, and in many ways limit, how we conceptualize and investigate them and may therefore constrain the questions we ask and the utility of the “answers” we generate. Many constructs are so nonspecific and over-inclusive as to be scientifically meaningless. “Executive function” is one such term in common usage. As the construct is increasingly focal in neuroscience research, defining it clearly is critical. We propose a definition that places executive function within a model of continuous sensorimotor interaction with the environment. We posit that control of behavior is the essence of “executive function,” and we explore the evolutionary advantage conferred by being able to anticipate and control behavior with both implicit and explicit mechanisms. We focus on the cerebellum's critical role in these control processes. We then hypothesize about the ways in which procedural (skill) learning contributes to the acquisition of declarative (semantic) knowledge. We hypothesize how these systems might interact in the process of grounding knowledge in sensorimotor anticipation, thereby directly linking movement to thought and “embodied cognition.” We close with a discussion of ways in which the cerebellum instructs frontal systems how to think ahead by providing anticipatory control mechanisms, and we briefly review this model's potential applications.


Cerebellum Executive function Embodied cognition Frontal systems Forward models Inverse models 


Conflict of Interest Statement

The authors have no conflicts of interest associated with this manuscript.


  1. 1.
    Cromwell HC, Panksepp J. Rethinking the cognitive revolution from a neural perspective: how overuse/misuse of the term ‘cognition’ and the neglect of affective controls in behavioral neuroscience could be delaying progress in understanding the BrainMind. Neurosci Biobehav Rev. 2011;35(9):2026–35.PubMedCrossRefGoogle Scholar
  2. 2.
    van Schouwenburg MR, den Ouden HE, Cools R. The human basal ganglia modulate frontal-posterior connectivity during attention shifting. J Neurosci. 2010;30(29):9910–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Koziol LF, Budding DE, Chidekel D. Adaptation, expertise, and giftedness: towards an understanding of cortical, subcortical, and cerebellar network contributions. Cerebellum. 2010;9:499–529.PubMedCrossRefGoogle Scholar
  4. 4.
    Ito M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 1993;16(11):448–50.PubMedCrossRefGoogle Scholar
  5. 5.
    Loring DW, Meador KJ. INS dictionary of neuropsychology. USA: Oxford University Press; 1999.Google Scholar
  6. 6.
    Lezak MD, Loring DW. Neuropsychological assessment. USA: Oxford University Press; 2004.Google Scholar
  7. 7.
    Gualtieri CT. The contribution of the frontal lobes to a theory of psychopathology. In: Ratey JJ, editor. Neuropsychiatry of personality disorders. Cambridge: Blackwell Science; 1995. p. 149–171.Google Scholar
  8. 8.
    Dubois B, Pillon B, McKeith IG. Parkinson's disease with and without dementia and lewy body dementia. In: Miller EK, Cummings JL, editors. The human frontal lobes: functions and disorders. New York: The Guilford Press; 2007. p. 472–504.Google Scholar
  9. 9.
    Miller R. A theory of the basal ganglia and their disorders. Boca Raton: CRC; 2008.Google Scholar
  10. 10.
    Haber SN, Rauch SL. Neurocircuitry: a window into the networks underlying neuropsychiatric disease. Neuropsychopharmacology. 2010;35(1):1–3.PubMedCrossRefGoogle Scholar
  11. 11.
    Ardila A. On the evolutionary origins of executive functions. Brain Cognit. 2008;68(1):92–9.CrossRefGoogle Scholar
  12. 12.
    Zelazo PD, Qu L, Muller U. Hot and cool aspects of executive function: relations in early development. In: Schneider W, Schumann-Hengsteler R, Sodian B, editors. Young children's cognitive development: interrelationships among executive functioning, working memory, verbal ability, and theory of mind. Mahwah: Lawrence Erlbaum; 2005. p. 71–93.Google Scholar
  13. 13.
    Salloway S, Malloy P, Cummings JL. The neuropsychiatry of limbic and subcortical disorders. Washington: American Psychiatric Press; 1997.Google Scholar
  14. 14.
    Frank MJ, O'Reilly RC, Curran T. When memory fails, intuition reigns: midazolam enhances implicit inference in humans. Psychol Sci. 2006;17(8):700–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Wan X, Nakatani H, Ueno K, Asamizuya T, Cheng K, Tanaka K. The neural basis of intuitive best next-move generation in board game experts. Science. 2011;331(6015):341.PubMedCrossRefGoogle Scholar
  16. 16.
    Manrique HM, Call J. Spontaneous use of tools as straws in great apes. Anim Cognit 2011;14(2):213–26.Google Scholar
  17. 17.
    Cantalupo C, Hopkins W. The cerebellum and its contribution to complex tasks in higher primates: a comparative perspective. Cortex. 2010;46(7):821–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Ramnani N. Frontal lobe and posterior parietal contributions to the cortico-cerebellar system. Cerebellum. 2011. doi: 10.1007/s12311-011-0272-3.
  19. 19.
    Pezzulo G. Coordinating with the future: the anticipatory nature of representation. Minds and Machines. 2008;18(2):179–225.CrossRefGoogle Scholar
  20. 20.
    Pezzulo G. Grounding procedural and declarative knowledge in sensorimotor anticipation. Mind Lang. 2011;26(1):78–114.Google Scholar
  21. 21.
    Piaget J, Inhelder B. The psychology of the child. 1972.Google Scholar
  22. 22.
    Barsalou LW. Grounded cognition: past, present, and future. Top Cogn Sci. 2010;2(3):322–7.CrossRefGoogle Scholar
  23. 23.
    Frank MJ, Doll BB, Oas-Terpstra J, Moreno F. Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nat Neurosci. 2009;12(8):1062–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Baddeley A. The central executive: a concept and some misconceptions. J Int Neuropsychol Soc. 1998;4(5):523–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Isoda M, Hikosaka O. Cortico basal ganglia mechanisms for overcoming innate, habitual and motivational behaviors. Eur J Neurosci. 2011;33(11):2058–69.PubMedCrossRefGoogle Scholar
  26. 26.
    Houk JC, Bastianen C, Fansler D, Fishbach A, Fraser D, Reber PJ, et al. Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1573–83.PubMedCrossRefGoogle Scholar
  27. 27.
    Bargh JA, Chartrand TL. The unbearable automaticity of being. Amer Psychol. 1999;54:462–79CrossRefGoogle Scholar
  28. 28.
    Bargh JA. The automaticity of everyday life. Wyer, Robert S Jr (Ed), et al. (1997). The automaticity of everyday life: Advances in social cognition, Vol. 10. (pp. 1-61). Mahwah, NJ, USA: Lawrence Erlbaum Associates, Inc. , Publishers. viii; 1997. 258 ppGoogle Scholar
  29. 29.
    Lakoff G, Johnson M. Philosophy in the flesh. 77th ed. New York: Basic Books; 1999.Google Scholar
  30. 30.
    Saling LL, Phillips JG. Automatic behaviour: efficient not mindless. Brain Res Bull. 2007;73(1–3):1–20.PubMedCrossRefGoogle Scholar
  31. 31.
    Imamizu H, Kawato M. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res. 2009;73(4):527–44.PubMedCrossRefGoogle Scholar
  32. 32.
    Imamizu H. Prediction of sensorimotor feedback from the efference copy of motor commands: a review of behavioral and functional neuroimaging studies. Jpn Psychol Res. 2010;52(2):107–20.CrossRefGoogle Scholar
  33. 33.
    Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.PubMedCrossRefGoogle Scholar
  34. 34.
    Cisek P, Kalaska JF. Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci. 2010;33:269–98.PubMedCrossRefGoogle Scholar
  35. 35.
    Shadlen MN, Movshon JA. Synchrony unbound: review a critical evaluation of the temporal binding hypothesis. Neuron. 1999;24:67–77.PubMedCrossRefGoogle Scholar
  36. 36.
    Singer W. Consciousness and the binding problem. Ann N Y Acad Sci. 2001;929(1):123–46.PubMedCrossRefGoogle Scholar
  37. 37.
    Stout D. The evolution of cognitive control. Top Cogn Sci. 2010;2(4):614–30.CrossRefGoogle Scholar
  38. 38.
    Bloedel JR, Bracha V. Duality of cerebellar motor and cognitive functions. Int Rev Neurobiol. 1997;41:613.PubMedCrossRefGoogle Scholar
  39. 39.
    Hazy TE, Frank MJ, O'Reilly RC. Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1601–13.PubMedCrossRefGoogle Scholar
  40. 40.
    Frank MJ, Loughry B, O'Reilly RC. Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cognit Affect Behav Neurosci. 2001;1(2):137–60.CrossRefGoogle Scholar
  41. 41.
    Stocco A, Lebiere C, Anderson JR. Conditional routing of information to the cortex: a model of the basal ganglia's role in cognitive coordination. Psychol Rev. 2010;117(2):541.PubMedCrossRefGoogle Scholar
  42. 42.
    Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.PubMedCrossRefGoogle Scholar
  43. 43.
    Jacob F. Evolution and tinkering. Science. 1977;196(4295):1161–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Martin A. The representation of object concepts in the brain. Annu Rev Psychol. 2007;58:25–45.PubMedCrossRefGoogle Scholar
  45. 45.
    Freeman JB, Dale R, Farmer TA. Hand in motion reveals mind in motion. Front Psychol. 2011;2:59.PubMedCrossRefGoogle Scholar
  46. 46.
    Valyear KF, Chapman CS, Gallivan JP, Mark RS, Culham JC. To use or to move: goal-set modulates priming when grasping real tools. Exp Brain Res 2011;212(1):125–42Google Scholar
  47. 47.
    Hendriks-Jansen H. Catching ourselves in the act: situated activity, interactive emergence, evolution, and human thought. Cambridge: MIT; 1996.Google Scholar
  48. 48.
    Freeman JB, Ambady N. A dynamic interactive theory of person construal. Psychol Rev. 2011;118(2):247.PubMedCrossRefGoogle Scholar
  49. 49.
    Ito M. The cerebellum: brain for an implicit self. Upper Saddle River: FT Press; 2011.Google Scholar
  50. 50.
    Heilman KM, Rothi LJG. Apraxia. In: Heilman KM, Valenstein E, editors. Clinical neuropsychology. 4th ed. New York: Oxford University Press; 2003. p. 215–35.Google Scholar
  51. 51.
    Barsalou LW. Grounded cognition. Annu Rev Psychol. 2008;59:617–45.PubMedCrossRefGoogle Scholar
  52. 52.
    Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey MJ. The mechanics of embodiment: a dialog on embodiment and computational modeling. Front Psychol. 2011;2:5.Google Scholar
  53. 53.
    Milner AD, Goodale MA. Two visual systems re-viewed. Neuropsychologia. 2008;46(3):774–85.PubMedCrossRefGoogle Scholar
  54. 54.
    Njiokiktjien C. Developmental dyspraxias: assessment and differential diagnosis. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge: John Libbey Eurotext; 2010. p. 157–86.Google Scholar
  55. 55.
    Kaldy, Leslie AM. Identification of objects in 9 month old infants: integrating “what” and “where” information. Dev Sci. 2003;6(3):360–73.CrossRefGoogle Scholar
  56. 56.
    Doll BB, Frank MJ. The basal ganglia in reward and decision making: computational models and empirical studies. Handbook of Reward and Decision Making. 2009;399:399–425.CrossRefGoogle Scholar
  57. 57.
    Sheth SA, Abuelem T, Gale JT, Eskandar EN. Basal ganglia neurons dynamically facilitate exploration during associative learning. J Neurosci. 2011;31(13):4878.PubMedCrossRefGoogle Scholar
  58. 58.
    Heekeren HR, Wartenburger I, Marschner A, Mell T, Villringer A, Reischies FM. Role of ventral striatum in reward-based decision making. NeuroReport. 2007;18(10):951.PubMedCrossRefGoogle Scholar
  59. 59.
    Haber SN, Kim KS, Mailly P, Calzavara R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci. 2006;26(32):8368–76.PubMedCrossRefGoogle Scholar
  60. 60.
    Cisek P, Kalaska JF. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron. 2005;45(5):801–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Thach WT. Context-response linkage. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 600–12.Google Scholar
  62. 62.
    Kinsbourne M, Jordan JS. Embodied anticipation: a neurodevelopmental interpretation. Discourse Process. 2009;46(2):103–26.CrossRefGoogle Scholar
  63. 63.
    Smaers JB, Steele J, Zilles K. Modeling the evolution of cortico cerebellar systems in primates. Ann NY Acad Sci. 2011;1225(1):176–90.PubMedCrossRefGoogle Scholar
  64. 64.
    Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.PubMedCrossRefGoogle Scholar
  65. 65.
    Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443.PubMedCrossRefGoogle Scholar
  66. 66.
    Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. NeuroImage. 2010;49(3):2045–52.PubMedCrossRefGoogle Scholar
  67. 67.
    Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JL, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex. 2006;16(6):811–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31(2–3):236–50.PubMedCrossRefGoogle Scholar
  69. 69.
    Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.PubMedGoogle Scholar
  70. 70.
    Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.PubMedCrossRefGoogle Scholar
  71. 71.
    Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum 2011 (in press)Google Scholar
  72. 72.
    Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Marien P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110(8):763–73.PubMedCrossRefGoogle Scholar
  73. 73.
    Balsters JH, Ramnani N. Symbolic representations of action in the human cerebellum. NeuroImage. 2008;43(2):388–98.PubMedCrossRefGoogle Scholar
  74. 74.
    Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22.PubMedCrossRefGoogle Scholar
  75. 75.
    Herculano-Houzel S. Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat. 2010;4:12.PubMedGoogle Scholar
  76. 76.
    Shadmehr R, de Xivry JJ Orban, Xu-Wilson M, Shih TY. Temporal discounting of reward and the cost of time in motor control. J Neurosci. 2010;30(31):10507–16.PubMedCrossRefGoogle Scholar
  77. 77.
    Ito M. Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.PubMedCrossRefGoogle Scholar
  78. 78.
    Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Ungerleider LG. Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci USA. 2002;99(2):1017.PubMedCrossRefGoogle Scholar
  79. 79.
    Galea JM, Vazquez A, Pasricha N, Orban de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cerebr Cortex 2010;21(8):1761–70Google Scholar
  80. 80.
    Kawato M, Furukawa K, Suzuki R. A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern. 1987;57(3):169–85.PubMedCrossRefGoogle Scholar
  81. 81.
    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501.PubMedCrossRefGoogle Scholar
  82. 82.
    Granziera C, Schmahmann JD, Hadjikhani N, Meyer H, Meuli R, Wedeen V, et al. Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PLoS One. 2009;4(4):e5101.PubMedCrossRefGoogle Scholar
  83. 83.
    Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47(1):59–80.PubMedCrossRefGoogle Scholar
  84. 84.
    Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.PubMedCrossRefGoogle Scholar
  85. 85.
    Hu D, Shen H, Zhou Z. Functional asymmetry in the cerebellum: a brief review. Cerebellum. 2008;7(3):304–13.PubMedCrossRefGoogle Scholar
  86. 86.
    Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum. 2010;9(1):22–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Kuper M, Dimitrova A, Thurling M, Maderwald S, Roths J, Elles HG, et al. Evidence for a motor and a non-motor domain in the human dentate nucleus—an fMRI study. NeuroImage. 2011;54(4):2612–22.PubMedCrossRefGoogle Scholar
  89. 89.
    Thurling M, Kuper M, Stefanescu R, Maderwald S, Gizewski ER, Ladd ME, et al. Activation of the dentate nucleus in a verb generation task: a 7T MRI study. Neuroimage 2011 (in press) uncorrected proofGoogle Scholar
  90. 90.
    Ambrose SH. Paleolithic technology and human evolution. Science. 2001;291(5509):1748.PubMedCrossRefGoogle Scholar
  91. 91.
    Ambrose SH. Coevolution of composite-tool technology, constructive memory, and language: implications for the evolution of modern human behavior. Curr Anthropol. 2010;51(S1):S135–47.Google Scholar
  92. 92.
    Stout D, Chaminade T. Making tools and making sense: complex, intentional behaviour in human evolution. Camb Archaeol J. 2009;19(01):85–96.CrossRefGoogle Scholar
  93. 93.
    Langbroek M. Trees and ladders: a critique of the theory of human cognitive and behavioural evolution in Palaeolithic archaeology. Quaternary International, (in press) corrected proofGoogle Scholar
  94. 94.
    Johnson-Frey SH. The neural bases of complex tool use in humans. Trends Cognit Sci. 2004;8(2):71–8.CrossRefGoogle Scholar
  95. 95.
    Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cerebr Cortex. 2009;19(10):2485–97.CrossRefGoogle Scholar
  96. 96.
    Imamizu H. Learning and switching of internal models for dexterous tool use. In: Danion F, Latash M, editors. Motor control: theories, experiments, and applications. New York: Oxford Press; 2011. p. 245–266.Google Scholar
  97. 97.
    Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M. Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci USA. 2003;100(9):5461–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Higuchi S, Imamizu H, Kawato M. Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex. 2007;43(3):350–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Imamizu H, Kawato M. Neural correlates of predictive and postdictive switching mechanisms for internal models. J Neurosci. 2008;28(42):10751.PubMedCrossRefGoogle Scholar
  100. 100.
    Imamizu H, Kuroda T, Yoshioka T, Kawato M. Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. J Neurosci. 2004;24(5):1173–81.PubMedCrossRefGoogle Scholar
  101. 101.
    Dias-Ferreira E, Sousa N, Costa RM. Frontocerebellar connectivity: climbing through the inferior olive. Front Neurosci. 2010, 3:18.Google Scholar
  102. 102.
    Depue BE, Burgess GC, Willcutt EG, Bidwell L, Ruzic L, Banich MT. Symptom-correlated brain regions in young adults with combined-type ADHD: their organization, variability, and relation to behavioral performance. Psychiatr Res Neuroimaging. 2010;182(2):96–102.CrossRefGoogle Scholar
  103. 103.
    Durston S, van Belle J, de Zeeuw P. Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;69(12):1178–84.PubMedCrossRefGoogle Scholar
  104. 104.
    Svensson H, Ziemke T. Embodied representation: what are the issues. In: Bara B, Barsalou L, Buccarelli E, editors. Proceedings of the 27th annual meeting of the Cognitive Science Society. NJ: Lawrence Erlbaum; 2005. p. 2116–2121.Google Scholar
  105. 105.
    Squire LR. Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem. 2004;82(3):171–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Poldrack RA, Clark J, Pare-Blagoev EJ, Shohamy D, Moyano JC, Myers C, et al. Interactive memory systems in the human brain. Synthesis. 2001;52:297–314.Google Scholar
  107. 107.
    Doya K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Network. 1999;12(7–8):961–74.CrossRefGoogle Scholar
  108. 108.
    Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.PubMedCrossRefGoogle Scholar
  109. 109.
    Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci USA. 2010;107(18):8452–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Rogers TD, Dickson PE, Heck DH, Goldowitz D, Mittleman G, Blaha CD. Connecting the dots of the cerebro-cerebellar role in cognitive function: neuronal pathways for cerebellar modulation of dopamine release in the prefrontal cortex. Synapse. 2011;65(11):1204–12.PubMedCrossRefGoogle Scholar
  111. 111.
    Jeannerod M. The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci. 1994;17(02):187–202.CrossRefGoogle Scholar
  112. 112.
    Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage. 2001;14(1):S103–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Wadsworth HM, Kana RK. Brain mechanisms of perceiving tools and imagining tool use acts: a functional MRI study. Neuropsychologia. 2011;49(7):1863–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Miall RC. Connecting mirror neurons and forward models. NeuroReport. 2003;14(17):2135.PubMedCrossRefGoogle Scholar
  115. 115.
    Hotz-Boendermaker S, Hepp-Reymond MC, Curt A, Kollias SS. Movement observation activates lower limb motor networks in chronic complete paraplegia. Neurorehabil Neural Repair. 2011;25(5):469.PubMedCrossRefGoogle Scholar
  116. 116.
    Johnson-Frey SH, Newman-Norland R, Grafton ST. A distributed network in the left cerebral hemisphere for planning everyday tool use actions. Cerebr Cortex. 2005;15(6):681–95.CrossRefGoogle Scholar
  117. 117.
    Zola SM. The neurobiology of recovered memory. In: Salloway SP, Malloy PF, Cummings JL, editors. The neuropsychiatry of limbic and subcortical disorders. Washington: American Psychiatric Press; 1997. p. 143–54.Google Scholar
  118. 118.
    Raj V, Bell MA. Cognitive processes supporting episodic memory formation in childhood: the role of source memory, binding, and executive functioning. Dev Rev. 2010;30(4):384–402.CrossRefGoogle Scholar
  119. 119.
    Bachevalier J, Malkova L, Beauregard M. Multiple memory systems: a neuropsychological and developmental perspective. In: Lyon GR, Krasnegor NA, editors. Attention, memory, and executive function. Baltimore: Brookes; 1996. p. 185–198.Google Scholar
  120. 120.
    Hayne H, Imuta K. Episodic memory in 3- and 4-year-old children. Dev Psychobiol. 2011;53(3):317–22.PubMedCrossRefGoogle Scholar
  121. 121.
    Poore MA, Barlow SM. Suck predicts neuromotor integrity and developmental outcomes. Perspect Speech Sci Orofacial Disord. 2009;19(1):44.CrossRefGoogle Scholar
  122. 122.
    Piek JP, Dawson L, Smith LM, Gasson N. The role of early fine and gross motor development on later motor and cognitive ability. Hum Mov Sci. 2008;27(5):668–81.PubMedCrossRefGoogle Scholar
  123. 123.
    Westendorp M, Hartman E, Houwen S, Smith J, Visscher C. The relationship between gross motor skills and academic achievement in children with learning disabilities. Research in developmental disabilities (in press) corrected proof; 2011.Google Scholar
  124. 124.
    Largo RH, Fischer JE, Rousson V. Neuromotor development from kindergarten age to adolescence: developmental course and variability. Swiss Med Wkly. 2003;133(13/14):193–9.PubMedGoogle Scholar
  125. 125.
    Gibson KR. Evolution of human intelligence: the roles of brain size and mental construction. Brain Behav Evol. 2002;59(1–2):10–20.PubMedCrossRefGoogle Scholar
  126. 126.
    Blumenfeld H. Neuroanatomy through clinical cases. Sinauer Associates; 2002.Google Scholar
  127. 127.
    Von Hofsten C. Action in development. Dev Sci. 2007;10(1):54–60.CrossRefGoogle Scholar
  128. 128.
    Von Hofsten C. Action, the foundation for cognitive development. Scand J Psychol. 2009;50(6):617–23.CrossRefGoogle Scholar
  129. 129.
    Lockman JJ. A perception-action perspective on tool use development. Child Dev. 2000;71(1):137–44.PubMedCrossRefGoogle Scholar
  130. 130.
    Tomasello M, Carpenter M, Liszkowski U. A new look at infant pointing. Child Dev. 2007;78(3):705–22.PubMedCrossRefGoogle Scholar
  131. 131.
    Want SC, Harris PL. Learning from other people's mistakes: causal understanding in learning to use a tool. Child Dev. 2001;72(2):431–43.PubMedCrossRefGoogle Scholar
  132. 132.
    Piek JP. Infant motor development. Human Kinetics Publishers; 2006.Google Scholar
  133. 133.
    Von Hofsten C. An action perspective on motor development. Trends Cogn Sci. 2004;8(6):266–72.CrossRefGoogle Scholar
  134. 134.
    Adolph KE, Berger SA. Motor development. In: Damon W, Lerner R, series editors; and Kuhn D, Siegler S, volume editors. Handbook of child psychology: Vol 2: Cognition, perception, and language (6th ed.) New York: Wiley; 2006. p. 161–213.Google Scholar
  135. 135.
    Koziol LF, Budding DE. Subcortical structures and cognition: implications for neuropsychological assessment. New York: Springer; 2009.Google Scholar
  136. 136.
    Cotterill RM. Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: possible implications for cognition, consciousness, intelligence and creativity. Prog Neurobiol. 2001;64(1):1–33.PubMedCrossRefGoogle Scholar
  137. 137.
    Hazy TE, Frank MJ, O'Reilly RC. Banishing the homunculus: making working memory work. Neuroscience. 2006;139(1):105–18.PubMedCrossRefGoogle Scholar
  138. 138.
    Houk JC, Wise SP. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex. 1995;5(2):95–110.PubMedCrossRefGoogle Scholar
  139. 139.
    Imamizu H, Kawato M. Cerebellar internal models: implications for the dexterous use of tools. Cerebellum. 2010;22:1–11.Google Scholar
  140. 140.
    Milner TE, Franklin DW, Imamizu H, Kawato M. Central control of grasp: manipulation of objects with complex and simple dynamics. NeuroImage. 2007;36(2):388–95.PubMedCrossRefGoogle Scholar
  141. 141.
    Schultz J, Imamizu H, Kawato M, Frith CD. Activation of the human superior temporal gyrus during observation of goal attribution by intentional objects. J Cogn Neurosci. 2004;16(10):1695–705.PubMedCrossRefGoogle Scholar
  142. 142.
    Panksepp J. Affective neuroscience: the foundations of human and animal emotions. USA: Oxford University Press; 2004.Google Scholar
  143. 143.
    De Quiros JB, Schrager, OL. Neuropsychological fundamentals in learning disabilities. Novato, CA: Academic Therapy; 1979.Google Scholar
  144. 144.
    Rorke LB, Riggs HE. Myelination of the brain in the newborn. Philadelphia: Lippincott; 1969.Google Scholar
  145. 145.
    Power JD, Fair DA, Schlaggar BL, Petersen SE. The development of human functional brain networks. Neuron. 2010;67(5):735–48.PubMedCrossRefGoogle Scholar
  146. 146.
    Yakovlev PI, Lecours AR. The myelogenetic cycles of regional maturationh of the brain. In: Minkowski A, editor. Regional development of the brain in early life. Boston: Blackwell Scientific; 1967. p. 3–70.Google Scholar
  147. 147.
    Altman J, Bayer SA. Development of the cerebellar system: in relation to its evolution, structure, and functions. Boca Raton: CRC; 1997.Google Scholar
  148. 148.
    Giedd JN, Rapoport JL. Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron. 2010;67(5):728–34.PubMedCrossRefGoogle Scholar
  149. 149.
    Barber AD, Srinivasan P, Joel SE, Caffo BS, Pekar JJ, Mostofsky SH. Motor “Dexterity”?: evidence that left hemisphere lateralization of motor circuit connectivity is associated with better motor performance in children. Cerebral Cortex 2011 (in press)Google Scholar
  150. 150.
    Petrini JR, Dias T, McCormick MC, Massolo ML, Green NS, Escobar GJ. Increased risk of adverse neurological development for late preterm infants. J Pediatr. 2009;154(2):169–76.PubMedCrossRefGoogle Scholar
  151. 151.
    Bhutta AT, Cleves MA, Casey PH, Cradock MM, Anand KJ. Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA. 2002;288(6):728–37.PubMedCrossRefGoogle Scholar
  152. 152.
    Riva D, Vago C, Usilla A, Treccani C, Pantaleoni C, D'Arrigo S, et al. The role of the cerebellum in higher cognitive and social functions in congenital and acquired diseases of developmental age. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge: John Libbey Eurotext; 2010. p. 133–44.Google Scholar
  153. 153.
    Limperopoulos C, Soul JS, Haidar H, Huppi PS, Bassan H, Warfield SK, et al. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics. 2005;116(4):844–50.PubMedCrossRefGoogle Scholar
  154. 154.
    Messerschmidt A, Brugger PC, Boltshauser E, Zoder G, Sterniste W, Birnbacher R, et al. Disruption of cerebellar development: potential complication of extreme prematurity. AJNR Am J Neuroradiol. 2005;26(7):1659–67.PubMedGoogle Scholar
  155. 155.
    Allin M, Matsumoto H, Santhouse AM, Nosarti C, AlAsady MH, Stewart AL, et al. Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain. 2001;124(Pt 1):60–6.PubMedCrossRefGoogle Scholar
  156. 156.
    Allin MP, Salaria S, Nosarti C, Wyatt J, Rifkin L, Murray RM. Vermis and lateral lobes of the cerebellum in adolescents born very preterm. NeuroReport. 2005;16(16):1821–4.PubMedCrossRefGoogle Scholar
  157. 157.
    Herbert JS, Eckerman CO, Goldstein RF, Stanton ME. Contrasts in infant classical eyeblink conditioning as a function of premature birth. Infancy. 2004;5(3):367–83.CrossRefGoogle Scholar
  158. 158.
    Kessenich M. Developmental outcomes of premature, low birth weight, and medically fragile infants. Newborn and Infant Nurs Rev. 2003;3(3):80–7.CrossRefGoogle Scholar
  159. 159.
    Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol. 2009;24(9):1085–104.PubMedCrossRefGoogle Scholar
  160. 160.
    Tanskanen P, Valkama M, Haapea M, Barnes A, Ridler K, Miettunen J, et al. Is prematurity associated with adult cognitive outcome and brain structure? Pediatr Neurol. 2011;44(1):12–20.PubMedCrossRefGoogle Scholar
  161. 161.
    Haldipur P, Bharti U, Alberti C, Sarkar C, Gulati G, Iyengar S, et al. Preterm delivery disrupts the developmental program of the cerebellum. PLoS One. 2011;6(8):e23449.PubMedCrossRefGoogle Scholar
  162. 162.
    Connolly KJ, Dalgleish M. Individual patterns of tool use by infants. In: Kalverboer AF, Hopkins B, Geuze R, editors. Motor development in early and later childhood: longitudinal approaches. Cambridge: Cambridge University Press; 1993; p. 174–204.CrossRefGoogle Scholar
  163. 163.
    Voogd J, Schraa-Tam CKL, van der Geest JN, De Zeeuw CI. Visuomotor cerebellum in human and nonhuman primates. Cerebellum 2010;1–19.Google Scholar
  164. 164.
    Blakemore SJ, Sirigu A. Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res. 2003;153(2):239–45.PubMedCrossRefGoogle Scholar
  165. 165.
    Doron KW, Funk CM, Glickstein M. Fronto-cerebellar circuits and eye movement control: a diffusion imaging tractography study of human cortico-pontine projections. Brain Res. 2010;1307:63–71.PubMedCrossRefGoogle Scholar
  166. 166.
    Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):44–56.PubMedCrossRefGoogle Scholar
  167. 167.
    Li S, Ostwald D, Giese M, Kourtzi Z. Flexible coding for categorical decisions in the human brain. J Neurosci. 2007;27(45):12321.PubMedCrossRefGoogle Scholar
  168. 168.
    Banich MT, Compton RJ. Cognitive neuroscience. 3rd ed. Belmont: Wadsworth; 2011.Google Scholar
  169. 169.
    Seger CA. The involvement of corticostriatal loops in learning across tasks, species, and methodologies. In: Groenewegen H, Berendse H, editors. The Basal Ganglia IX: Proceedings of the 9th Triennial Meeting of the International Basal Ganglia Society. New York: Springer; 2009.Google Scholar
  170. 170.
    Seger CA, Miller EK. Category learning in the brain. Annu Rev Neurosci. 2010;Jul 21;33(1).Google Scholar
  171. 171.
    Schmahmann JD. The cerebellum and cognition. San Diego: Academic Press; 1997.Google Scholar
  172. 172.
    Higuchi S, Chaminade T, Imamizu H, Kawato M. Shared neural correlates for language and tool use in Broca's area. NeuroReport. 2009;20(15):1376–81.PubMedCrossRefGoogle Scholar
  173. 173.
    Stout D, Toth N, Schick K, Chaminade T. Neural correlates of Early Stone Age toolmaking: technology, language and cognition in human evolution. Philos Trans R Soc Lond B Biol Sci. 2008;363(1499):1939–49.PubMedCrossRefGoogle Scholar
  174. 174.
    Vandervert LR, Koziol LF. How language came to be. Poster presented at the Second International Congress of the Society for Research on the Cerebellum. Chicago, IL. 2009.Google Scholar
  175. 175.
    Ullman MT, Pierpont EI. Specific language impairment is not specific to language: the procedural deficit hypothesis. Cortex. 2005;41(3):399–433.PubMedCrossRefGoogle Scholar
  176. 176.
    Ullman MT. Contributions of memory circuits to language: the declarative/procedural model. Cognition. 2004;92(1–2):231–70.PubMedCrossRefGoogle Scholar
  177. 177.
    Glenberg AM, Gallese V. Action-based language: a theory of language acquisition, comprehension, and production. Cortex. 2011. doi: 10.1016/j.cortex.2011.04.010.
  178. 178.
    Gallese V, Rochat M, Cossu G, Sinigaglia C. Motor cognition and its role in the phylogeny and ontogeny of action understanding. Dev Psychol. 2009;45(1):103.PubMedCrossRefGoogle Scholar
  179. 179.
    Mostofsky SH, Ewen JB. Altered connectivity and action model formation in autism is autism. Neuroscientist. 2011. doi: 10.1177/1073858410392381.
  180. 180.
    Schmahmann JD, Sherman JC. Cerebellar cognitive affective syndrome. Int Rev Neurobiol. 1997;41:433–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Leonard F. Koziol
    • 1
    Email author
  • Deborah Ely Budding
    • 2
  • Dana Chidekel
    • 3
  1. 1.ChicagoUSA
  2. 2.Manhattan BeachUSA
  3. 3.TarzanaUSA

Personalised recommendations