The Cerebellum

, Volume 11, Issue 2, pp 549–556 | Cite as

Cerebellar Cognitive Affective Syndrome in Machado Joseph Disease: Core Clinical Features

  • Pedro Braga-Neto
  • José Luiz Pedroso
  • Helena Alessi
  • Lívia Almeida Dutra
  • André Carvalho Felício
  • Thaís Minett
  • Patrícia Weisman
  • Ruth F. Santos-Galduroz
  • Paulo Henrique F. Bertolucci
  • Alberto Alain Gabbai
  • Orlando Graziani Povoas Barsottini
Original Paper

Abstract

The cerebellum is no longer considered a purely motor control device, and convincing evidence has demonstrated its relationship to cognitive and emotional neural circuits. The aims of the present study were to establish the core cognitive features in our patient population and to determine the presence of Cerebellar Cognitive Affective Syndrome (CCAS) in this group. We recruited 38 patients with spinocerebellar ataxia type 3 (SCA3) or Machado–Joseph disease (MJD)-SCA3/MJD and 31 controls. Data on disease status were recorded (disease duration, age, age at onset, ataxia severity, and CAG repeat length). The severity of cerebellar symptoms was measured using the International Cooperative Ataxia Rating Scale and the Scale for the Assessment and Rating of Ataxia. The neuropsychological assessment consisted of the Mini-Mental State Examination, Clock Drawing Test, Wechsler Adult Intelligence Scale, Rey–Osterrieth Complex Figure, Wisconsin Card Sorting Test, Stroop Color–Word Test, Trail-Making Test, Verbal Paired Associates, and verbal fluency tests. All subjects were also submitted to the Hamilton Anxiety Scale and Beck Depression Inventory. After controlling for multiple comparisons, spatial span, picture completion, symbol search, Stroop Color–Word Test, phonemic verbal fluency, and Trail-Making Tests A and B were significantly more impaired in patients with SCA3/MJD than in controls. Executive and visuospatial functions are impaired in patients with SCA3/MJD, consistent with the symptoms reported in the CCAS. We speculate on a possible role in visual cortical processing degeneration and executive dysfunction in our patients as a model to explain their main cognitive deficit.

Keywords

Spinocerebellar ataxia type 3 Machado–Joseph disease Cognitive deficits Cerebellar Cognitive Affective Syndrome 

References

  1. 1.
    Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.PubMedCrossRefGoogle Scholar
  2. 2.
    Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.PubMedCrossRefGoogle Scholar
  3. 3.
    Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2011. doi:10.1007/s12311-011-0247-4.
  4. 4.
    Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.PubMedCrossRefGoogle Scholar
  6. 6.
    Schmahmann JD, Caplan D. Cognition, emotion and the cerebellum. Brain. 2006;129:288–92.Google Scholar
  7. 7.
    Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.PubMedCrossRefGoogle Scholar
  8. 8.
    Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.PubMedCrossRefGoogle Scholar
  9. 9.
    Manto M, Lorivel T. Cognitive repercussions of hereditary cerebellar disorders. Cortex. 2011;47:81–100.PubMedCrossRefGoogle Scholar
  10. 10.
    Bürk K, Globas C, Bösch S, Klockgether T, Zühlke C, Daum I, et al. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol. 2003;250:207–11.PubMedCrossRefGoogle Scholar
  11. 11.
    Klinke I, Minnerop M, Schmitz-Hübsch T, Hendriks M, Klockgether T, Wüllner U, et al. Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum. 2010;9:433–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Radvany J, Camargo CHP, Costa ZM, Fonseca NC, Nascimento ED. Machado Joseph disease of Azorean ancestry in Brazil: the Catarina kindred. Neurological, neuroimaging, psychiatric and neuropsychological findings in the largest known family, the Catarina kindred. Arq Neuropsiquiatr. 1993;51:21–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Zawacki TM, Grace J, Friedman JH, Sudarsky L. Executive and emotional dysfunction in Machado-Joseph disease. Mov Disord. 2002;17:1004–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Maruff P, Tyler P, Burt T, Currie B, Burns C, Currie J. Cognitive deficits in Machado-Joseph disease. Ann Neurol. 1996;40:421–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Kawai Y, Takeda A, Abe Y, Washimi Y, Tanaka F, Sobue G. Cognitive impairments in Machado-Joseph disease. Arch Neurol. 2004;61:1757–60.PubMedCrossRefGoogle Scholar
  16. 16.
    Takiyama Y, Nishizawa M, Tanaka H, et al. The gene for Machado-Joseph disease maps to human chromosome 14q. Nat Genet. 1993;4:300–3.PubMedCrossRefGoogle Scholar
  17. 17.
    Lima L, Coutinho P. Clinical criteria for diagnosis of Machado-Joseph disease: report of a non-Azorena Portuguese family. Neurology. 1980;30:319–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Jardim LB, Pereira ML, Silveira I, Ferro A, Sequeiros J, Giugliani R. Neurologic findings in Machado-Joseph disease: relation with disease duration, subtypes, and (CAG)n. Arch Neurol. 2001;58:899–904.PubMedCrossRefGoogle Scholar
  19. 19.
    Braga-Neto P, Felicio AC, Pedroso JL, Dutra LA, Bertolucci PH, Gabbai AA, et al. Clinical correlates of olfactory dysfunction in spinocerebellar ataxia type 3. Parkinsonism Relat Disord. 2011;17:353–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Pedroso JL, Braga-Neto P, Felício AC, Dutra LA, Santos WA, do Prado GF, et al. Sleep disorders in Machado Joseph disease: frequency, discriminative thresholds, predictive values and correlation with ataxia-related motor and non-motor features. Cerebellum. 2011;10:291–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Friedman JH, Fernandez HH, Sudarsky LR. REM behavior disorder and excessive daytime somnolence in Machado-Joseph disease (SCA-3). Mov Disord. 2003;18:1520–2.PubMedCrossRefGoogle Scholar
  22. 22.
    Rüb U, Brunt ER, Deller T. New insights into the pathoanatomy of spinocerebellar ataxia type 3 (Machado Joseph disease). Curr Opin Neurol. 2008;21:111–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome: The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997;145:205–11.PubMedCrossRefGoogle Scholar
  24. 24.
    Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–20.PubMedCrossRefGoogle Scholar
  25. 25.
    Braga-Neto P, Godeiro-Junior C, Dutra LA, Pedroso JL, Barsottini OG. Translation and validation into Brazilian version of the Scale of the Assessment and Rating of Ataxia (SARA). Arq Neuropsiquiatr. 2010;68:228–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Hamilton M. The assessment of anxiety states by rating. Br J Med Psychol. 1953;32:50–5.CrossRefGoogle Scholar
  27. 27.
    Gorenstein C, Andrade L, Vieira Filho AH, Tung TC, Artes R. Psychometric properties of the Portuguese version of the Beck Depression Inventory on Brazilian college students. J Clin Psychol. 1999;55:553–62.PubMedCrossRefGoogle Scholar
  28. 28.
    Folstein MF, Folstein SE, McHugh PR. Mini-Mental State: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.PubMedCrossRefGoogle Scholar
  29. 29.
    Bertolucci PH, Brucki SM, Campacci SR, Juliano Y. The Mini-Mental State Examination in a general population: impact of educational status. Arq Neuropsiquiatr. 1994;52:1–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Freedman M, Leach L, Kaplan E, Winocour G, Shulman KI, Deli DC. Clock drawing: a neuropsychological analysis. New York: Oxford University Press; 1994.Google Scholar
  31. 31.
    Wechsler D. The Wechsler Adult Intelligence Scale-revised (WAIS-R). New York: The Psychological Corporation; 1981.Google Scholar
  32. 32.
    Wechsler D. Wechsler Adult Intelligence Scale (WAIS III): test manual. 3rd ed. New York: The Psychological Corporation; 1997.Google Scholar
  33. 33.
    Nascimento E. WAIS-III: Escala de Inteligência Wechsler para Adultos e manual técnico. São Paulo:Casa do Psicólogo;2005.Google Scholar
  34. 34.
    Lezak MD. Neuropsychological assessment. New York: Oxford University Press; 2004.Google Scholar
  35. 35.
    Wechsler D. Wechsler memory scale–revised manual. San Antonio: Psychological Corporation; 1987.Google Scholar
  36. 36.
    Reitan R. Validity of the trail making test as an indicator of organic brain damage. Percept Motor Skill. 1958;8:271–6.Google Scholar
  37. 37.
    Spreen O, Strauss E. A compendium of neuropsychological tests. 2nd ed. New York: Oxford University Press; 1998.Google Scholar
  38. 38.
    Heaton R. Wisconsin card sorting test manual (revised and expanded). Odessa, FL: Psychological Assessment Resources;1993.Google Scholar
  39. 39.
    Cunha JA, Trentini CM, Argimon IL, Oliveira MS, Werlang BG, Prieb PG. Teste Wisconsin de classificação de cartas: Manual, adaptação e padronização brasileira revisada e ampliada. São Paulo:Casa do Psicólogo;2005.Google Scholar
  40. 40.
    Händel B, Thier P, Haarmeier T. Visual motion perception deficits due to cerebellar lesions are paralleled by specific changes in cerebro-cortical activity. J Neurosci. 2009;29:15126–33.PubMedCrossRefGoogle Scholar
  41. 41.
    Soong B, Cheng C, Liu R, Shan D. Machado Joseph disease: clinical, molecular, and metabolic characterization in Chinese kindreds. Ann Neurol. 1997;41:446–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Kravitz DJ, Saleem KS, Baker CI, Mishkin M. A new neural framework for visuospatial processing. Nat Rev Neurosci. 2011;12:217–30.PubMedCrossRefGoogle Scholar
  43. 43.
    Seidel K, den Dunnen WF, Schultz C, Paulson H, Frank S, de Vos RA, et al. Axonal inclusions in spinocerebellar ataxia type 3. Acta Neuropathol. 2010;120:449–60.PubMedCrossRefGoogle Scholar
  44. 44.
    Rüb U, de Vos RA, Brunt ER, Sebestény T, Schöls L, Auburger G, et al. Spinocerebellar ataxia type 3 (SCA3): thalamic neurodegeneration occurs independently from thalamic ataxin-3 immunopositive neuronal intranuclear inclusions. Brain Pathol. 2006;16:218–27.PubMedCrossRefGoogle Scholar
  45. 45.
    Perret E. The left frontal lobe of man and the suppression of habitual responses in verbal categorical behavior. Neuropsychologia. 1974;12:323–30.PubMedCrossRefGoogle Scholar
  46. 46.
    Birn RM, Kenworthy L, Case L, Caravella R, Jones TB, Bandettini PA, et al. Neural systems supporting lexical search guided by letter and semantic category cues: a self-paced overt response fMRI study of verbal fluency. Neuroimage. 2010;49:1099–107.PubMedCrossRefGoogle Scholar
  47. 47.
    Leggio M, Silveri M, Petrosini L, Molinari M. Phonological grouping is specifically affected in cerebellar patients: a verbal fluency study. J Neurol Neurosurg Psychiatry. 2000;69:102–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Stoodley CJ, Schmahmann JD. The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang. 2009;110:149–53.PubMedCrossRefGoogle Scholar
  49. 49.
    Schmahmann JD, Pandya DN. Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. J Comp Neurol. 1993;337:94–112.PubMedCrossRefGoogle Scholar
  50. 50.
    Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci. 1997;17:438–58.PubMedGoogle Scholar
  51. 51.
    D'Abreu A, França Jr MC, Yasuda CL, Campos BA, Lopes-Cendes I, Cendes F. Neocortical atrophy in Machado-Joseph disease: a longitudinal neuroimaging study. J Neuroimaging 2011; doi:10.1111/j.1552-6569.2011.00614.x .

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Pedro Braga-Neto
    • 1
    • 2
  • José Luiz Pedroso
    • 1
    • 2
  • Helena Alessi
    • 1
  • Lívia Almeida Dutra
    • 1
    • 2
  • André Carvalho Felício
    • 1
  • Thaís Minett
    • 3
    • 4
  • Patrícia Weisman
    • 1
  • Ruth F. Santos-Galduroz
    • 5
    • 6
  • Paulo Henrique F. Bertolucci
    • 1
  • Alberto Alain Gabbai
    • 1
    • 2
  • Orlando Graziani Povoas Barsottini
    • 1
    • 2
  1. 1.Department of Neurology and NeurosurgeryUniversidade Federal de São PauloSão PauloBrazil
  2. 2.Instituto Israelita de Ensino e Pesquisa Albert EinsteinHospital Israelita Albert EinsteinSão PauloBrazil
  3. 3.Department of Preventive MedicineUniversidade Federal de São PauloSão PauloBrazil
  4. 4.Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
  5. 5.Center of Mathematics, Computer and CognitionUniversidade Federal do ABCSão PauloBrazil
  6. 6.Institute of Biosciences, UNESPRio ClaroBrazil

Personalised recommendations