Precerebellar Cell Groups in the Hindbrain of the Mouse Defined by Retrograde Tracing and Correlated with Cumulative Wnt1-Cre Genetic Labeling


The precerebellar nuclei are hindbrain and spinal cord centers that send fibers to the cerebellum. The neurons of the major hindbrain precerebellar nuclei are derived from the rhombic lip. Wnt1, a developmentally important gene involved in intercellular signaling, is expressed in the developing rhombic lip. We sought to investigate the relationship between the cell clusters expressing Wnt1 and the precerebellar nuclei in the hindbrain. We therefore defined the hindbrain precerebellar nuclei by retrograde tracing, following cerebellar injections of HRP, and compared these results with the cell clusters expressing Wnt1 in newborn mice. We found that 39 distinct hindbrain nuclei project to the cerebellum. Of these nuclei, all but three (namely the oral pontine reticular nucleus, the caudal pontine reticular nucleus, and the subcoeruleus nucleus) contain neurons expressing Wnt1. This shows a high degree of overlap between the precerebellar nuclei and the nuclei that express Wnt1. However, it should be noted that neurons expressing Wnt1 are also found in the superior olivary complex, which is a basal plate derivative lacking cerebellar projections.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



Lobules 4 and 5 of the cerebellar vermis


Motor trigeminal nucleus


Motor trigeminal nucleus, parvicellular part


Trigeminal-solitary transition zone


Trigeminal transition zone


Lobule 6 of the cerebellar vermis


Lobule 7 of the cerebellar vermis


Facial nerve


Facial nucleus


Lobule 8 of the cerebellar vermis


Arcuate nucleus


Cochlear nuclei




Choroid plexus


Crus1 of the ansiform lobule


Crus2 of the ansiform lobule


Cuneate nucleus


Dorsal cochlear nucleus


Dorsomedial spinal trigeminal nucleus


Dorsal raphe nucleus


External cuneate nucleus


Gigantocellular reticular nucleus


Inferior colliculus


Intercalated nucleus


Inferior olivary nucleus


Inferior olive dorsal nucleus


Inferior olive dorsomedial cell group


Inferior olive medial nucleus


Inferior olive principal nucleus


Intermediate reticular zone


Kölliker-Fuse nucleus


Locus coeruleus


Longitudinal fasiculus of the pons


Linear nucleus


Lateral parabrachial nucleus


Lateral parabrachial nucleus external part


Lateral reticular nucleus


Lateroventral periolivary nucleus


Middle cerebellar peduncle


Medullary reticular nucleus, dorsal part


Medullary reticular nucleus, ventral part


Medial lemniscus


Median raphe nucleus


Medial parabrachial nucleus


Medial vestibular nucleus


Medial vestibular nucleus, magnocellular part


Medial vestibular nucleus, parvicellular part


Medioventral periolivary nucleus


Matrix region of the medulla


Parvicelluar reticular nucleus, alpha part


Parvicelluar reticular nucleus


Paramedian lobule


Paramedian reticular nucleus


Paramedian raphe nucleus


Pontine nuclei


Pontine reticular nucleus, caudal part


Pontine nuclei, dorsolateral part


Pontine nuclei, lateral part


Pontine nuclei, medial part


Pontine reticular nucleus, oral part


Pontine nuclei, peduncular part


Pontine raphe nucleus


Pontine nuclei, ventral part


Prepositus nucleus


Principal sensory trigeminal nucleus


Principal sensory trigeminal nucleus dorsomedial part


Principal sensory trigeminal nucleus ventrolateral part


Pyramidal tract




Raphe interpositus nucleus


Rhombic lip


Raphe magnus nucleus


Nucleus of Roller


Raphe obscurus nucleus


Raphe pallidus nucleus


Reticulotegmental nucleus of the pons


Superior cerebellar peduncle


Simple lobule


Solitary nucleus


Spinal trigeminal nucleus, caudal part


Spinal trigeminal nucleus, interpolar part


Spinal trigeminal nucleus, oral part


Spinal vestibular nucleus


Subcoeruleus nuclei


Superior vestibular nucleus


Ventral cochlear nucleus posterior part


Vestibular nuclei


Nucleus X


Decussation of the superior cerebellar peduncle


Nucleus Y


  1. 1.

    Landsberg RL, Awatramani RB, Hunter NL, Farago AF, DiPietrantonio HJ, Rodriguez CI, et al. Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. Neuron. 2005;48:933–47.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Machold R, Fishell G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron. 2005;48:17–24.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Wang VY, Rose MF, Zoghbi HY. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron. 2005;48:31–43.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Brodal A. The cerebellum. Neurological anatomy in relation to clinical medicine. third ed. New York: Oxford university press; 1981. p. 294–394.

  5. 5.

    Harkmark W. Cell migrations from the rhombic lip to the inferior olive, the nucleus raphe and the pons; a morphological and experimental investigation on chick embryos. J Comp Neurol. 1954;100:115–209.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Altman J, Bayer SA. Development of the precerebellar nuclei in the rat: I. The precerebellar neuroepithelium of the rhombencephalon. J Comp Neurol. 1987;257:477–89.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Altman J, Bayer SA. Development of the precerebellar nuclei in the rat: II. The intramural olivary migratory stream and the neurogenetic organization of the inferior olive. J Comp Neurol. 1987;257:490–512.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Altman J, Bayer SA. Development of the precerebellar nuclei in the rat: III. The posterior precerebellar extramural migratory stream and the lateral reticular and external cuneate nuclei. J Comp Neurol. 1987;257:513–28.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Altman J, Bayer SA. Development of the precerebellar nuclei in the rat: IV. The anterior precerebellar extramural migratory stream and the nucleus reticularis tegmenti pontis and the basal pontine gray. J Comp Neurol. 1987;257:529–52.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Keynes R, Krumlauf R. Hox genes and regionalization of the nervous system. Annu Rev Neurosci. 1994;17:109–32.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Aroca P, Puelles L. Postulated boundaries and differential fate in the developing rostral hindbrain. Brain Res Brain Res Rev. 2005;49:179–90.

    PubMed  Article  Google Scholar 

  12. 12.

    Liu Z, Li H, Hu X, Yu L, Liu H, Han R, et al. Control of precerebellar neuron development by Olig3 bHLH transcription factor. J Neurosci. 2008;28:10124–33.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Rowan A. Development—mapping cerebellar development. Nat Rev Neurosci. 2006;7:598.

    Article  CAS  Google Scholar 

  14. 14.

    Farago AF, Awatramani RB, Dymecki SM. Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron. 2006;50:205–18.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Rodriguez CI, Dymecki SM. Origin of the precerebellar system. Neuron. 2000;27:475–86.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Nichols DH, Bruce LL. Migratory routes and fates of cells transcribing the Wnt-1 gene in the murine hindbrain. Dev Dyn. 2006;235:285–300.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Ahlsén G. Retrograde labelling of retinogeniculate neurones in the cat by HRP uptake from the diffuse injection zone. Brain Res. 1981;223:374–80.

    PubMed  Article  Google Scholar 

  18. 18.

    Dietrichs E, Walberg F. The cerebellar nucleo-olivary and olivo-cerebellar nuclear projections in the cat as studied with anterograde and retrograde transport in the same animal after implantation of crystalline WGA-HRP. II. The fastigial nucleus. Anat Embryol Berl. 1985;173:253–61.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Mesulam MM. Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem. 1978;26:106–17.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol. 1998;8:1323–6.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Chai Y, Jiang X, Ito Y, Bringas Jr P, Han J, Rowitch DH, et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 2000;127:1671–9.

    PubMed  CAS  Google Scholar 

  22. 22.

    Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999;21:70–1.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Franklin KBJ, Paxinos G. The mouse brain in stereotaxic coordinates. 3rd ed. San Diego: Elsevier; 2008.

    Google Scholar 

  24. 24.

    Tsai EC, van Bendegem RL, Hwang SW, Tator CH. A novel method for simultaneous anterograde and retrograde labeling of spinal cord motor tracts in the same animal. J Histochem Cytochem. 2001;49:1111–22.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Fujimori KE, Takauji R, Yoshihara Y, Tamada A, Mori K, Tamamaki N. A procedure for in situ hybridization combined with retrograde labeling of neurons: application to the study of cell adhesion molecule expression in Dil-labeled rat pyramidal neurons. J Histochem Cytochem. 1997;45:455–9.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Fu Y, Tvrdik P, Makki N, Palombi O, Machold R, Paxinos G, et al. The precerebellar linear nucleus in the mouse defined by connections, immunohistochemistry, and gene expression. Brain Res. 2009;1271:49–59.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Sugihara I, Wu H, Shinoda Y. Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. J Comp Neurol. 1999;414:131–48.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Van der Want JJ, Wiklund L, Guegan M, Ruigrok T, Voogd J. Anterograde tracing of the rat olivocerebellar system with Phaseolus vulgaris leucoagglutinin (PHA-L). Demonstration of climbing fiber collateral innervation of the cerebellar nuclei. J Comp Neurol. 1989;288:1–18.

    PubMed  Article  Google Scholar 

  29. 29.

    Ruigrok TJH. Precerebellar nuclei and red nuclei The rat nervous system. 3rd ed. Sydney: Academic; 2004. p. 180–7.

    Google Scholar 

  30. 30.

    Røste GK. Observations on the projection from the perihypoglossal nuclei to the cerebellar cortex and nuclei in the cat. A retrograde WGA-HRP and fluorescent tracer study. Anat Embryol Berl. 1989;180:521–33.

    PubMed  Article  Google Scholar 

  31. 31.

    Kotchabhakdi N, Walberg F. Cerebellar afferent projections from the vestibular nuclei in the cat: an experimental study with the method of retrograde axonal transport of horseradish peroxidase. Exp Brain Res. 1978;31:591–604.

    PubMed  CAS  Google Scholar 

  32. 32.

    Langer T, Fuchs AF, Scudder CA, Chubb MC. Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol. 1985;235:1–25.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Blanks RH, Precht W, Torigoe Y. Afferent projections to the cerebellar flocculus in the pigmented rat demonstrated by retrograde transport of horseradish peroxidase. Exp Brain Res. 1983;52:293–306.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Horn AK, Buttner-Ennever JA, Wahle P, Reichenberger I. Neurotransmitter profile of saccadic omnipause neurons in nucleus raphe interpositus. J Neurosci. 1994;14:2032–46.

    PubMed  CAS  Google Scholar 

  35. 35.

    Aitken AR, Tork I. Early development of serotonin-containing neurons and pathways as seen in wholemount preparations of the fetal-rat brain. J Comp Neurol. 1988;274:32–47.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Beyerl BD, Borges LF, Swearingen B, Sidman RL. Parasagittal organization of the olivocerebellar projection in the mouse. J Comp Neurol. 1982;209:339–46.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Hökfelt T, Fuxe K. Cerebellar monoamine nerve terminals, a new type of afferent fibers to the cortex cerebelli. Exp Brain Res. 1969;9:63–72.

    PubMed  Article  Google Scholar 

  38. 38.

    Dietrichs E, Wiklund L, Haines DE. The hypothalamo-cerebellar projection in the rat: origin and transmitter. Arch Ital Biol. 1992;130:203–11.

    PubMed  CAS  Google Scholar 

  39. 39.

    Haines DE, Dietrichs E, Culberson JL, Sowa TE. The organization of hypothalamocerebellar cortical fibers in the squirrel monkey (Saimiri sciureus). J Comp Neurol. 1986;250:377–88.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Olson L, Fuxe K. On the projections from the locus coeruleus noradrealine neurons: the cerebellar innervation. Brain Res. 1971;28:165–71.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Yaginuma H, Matsushita M. Spinocerebellar projections from the thoracic cord in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol. 1987;258:1–27.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Grant G, Wiksten B, Berkley KJ, Aldskogius H. The location of cerebellar-projecting neurons within the lumbosacral spinal cord in the cat. An anatomical study with HRP and retrograde chromatolysis. J Comp Neurol. 1982;204:336–48.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Matsushita M, Tanami T. Spinocerebellar projections from the central cervical nucleus in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol. 1987;266:376–97.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Matsushita M, Yaginuma H. Projections from the central cervical nucleus to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. J Comp Neurol. 1995;353:234–46.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Shaw MD, Baker R. The locations of stapedius and tensor tympani motoneurons in the cat. J Comp Neurol. 1983;216:10–9.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Strutz J, Münker G, Zöllner C. The motor innervation of the tympanic muscles in the guinea pig. Arch Otorhinolaryngol. 1988;245:108–11.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Mukerji S, Brown MC, Lee DJ. A morphologic study of Fluorogold labeled tensor tympani motoneurons in mice. Brain Res. 2009;1278:59–65.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK, Ruigrok TJ. Microcircuitry and function of the inferior olive. Trends Neurosci. 1998;21:391–400.

    PubMed  Article  Google Scholar 

  49. 49.

    Thomas KR, Capecchi MR. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature. 1990;346:847–50.

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Wingate RJ. The rhombic lip and early cerebellar development. Curr Opin Neurobiol. 2001;11:82–8.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Muroyama Y, Fujihara M, Ikeya M, Kondoh H, Takada S. Wnt signaling plays an essential role in neuronal specification of the dorsal spinal cord. Genes Dev. 2002;16:548–53.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Dickinson ME, Krumlauf R, McMahon AP. Evidence for a mitogenic effect of Wnt-1 in the developing mammalian central nervous system. Development. 1994;120:1453–71.

    PubMed  CAS  Google Scholar 

  53. 53.

    Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martinez S. The chick brain in stereotaxic coordinates. San Diego: Elsevier; 2007.

    Google Scholar 

  54. 54.

    Aroca P, Lorente-Cánovas B, Mateos FR, Puelles L. Locus coeruleus neurons originate in alar rhombomere 1 and migrate into the basal plate: studies in chick and mouse embryos. J Comp Neurol. 2006;496:802–18.

    PubMed  Article  Google Scholar 

  55. 55.

    Müller F, O'Rahilly R. The human brain at stages 21–23, with particular reference to the cerebral cortical plate and to the development of the cerebellum. Anat Embryol. 1990;182:375–400.

    PubMed  Article  Google Scholar 

  56. 56.

    Marín F, Puelles L. Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci. 1995;7:1714–38.

    PubMed  Article  Google Scholar 

  57. 57.

    Melloy PG, Kusnierczyk MK, Meyer RA, Lo CW, Desmond ME. Overexpression of connexin43 alters the mutant phenotype of midgestational wnt-1 null mice resulting in recovery of the midbrain and cerebellum. Anat Rec A Discov Mol Cell Evol Biol. 2005;283:224–38.

    PubMed  Google Scholar 

Download references


This project was supported by the ARC Thinking Systems Initiative TS0669860 and an NHMRC Australia Fellowship to GP. We are grateful for the support from NIH grants (NIH5R01GM021168-34) and Howard Hughes Medical Institute to Dr Mario Capecchi.

Conflicts of Interest Statement

The authors of this manuscript have no potential conflicts of interest in the submission. The manuscript has not been published before and is not under consideration anywhere else. The publication has been approved by all co-authors.

Author information



Corresponding author

Correspondence to Charles Watson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fu, Y., Tvrdik, P., Makki, N. et al. Precerebellar Cell Groups in the Hindbrain of the Mouse Defined by Retrograde Tracing and Correlated with Cumulative Wnt1-Cre Genetic Labeling. Cerebellum 10, 570 (2011).

Download citation


  • Hindbrain
  • Precerebellar nuclei
  • Wnt1
  • Inferior olivary nucleus
  • Rhombic lip