The Cerebellum

, Volume 11, Issue 2, pp 336–351 | Cite as

Topography of Cerebellar Deficits in Humans

Article

Abstract

The cerebellum is a key-piece for information processing and is involved in numerous motor and nonmotor activities, thanks to the anatomical characteristics of the circuitry, the enormous computational capabilities and the high connectivity to other brain areas. Despite its uniform cytoarchitecture, cerebellar circuitry is segregated into functional zones. This functional parcellation is driven by the connectivity and the anatomo-functional heterogeneity of the numerous extra-cerebellar structures linked to the cerebellum, principally brain cortices, precerebellar nuclei and spinal cord. Major insights into cerebellar functions have been gained with a detailed analysis of the cerebellar outputs, with the evidence that fundamental aspects of cerebrocerebellar operations are the closed-loop circuit and the predictions of future states. Cerebellar diseases result in disturbances of accuracy of movements and lack of coordination. The cerebellar syndrome includes combinations of oculomotor disturbances, dysarthria and other speech deficits, ataxia of limbs, ataxia of stance and gait, as well as often more subtle cognitive/behavioral impairments. Our understanding of the corresponding anatomo-functional maps for the human cerebellum is continuously improving. We summarize the topography of the clinical deficits observed in cerebellar patients and the growing evidence of a regional subdivision into motor, sensory, sensorimotor, cognitive and affective domains. The recently described topographic dichotomy motor versus nonmotor cerebellum based upon anatomical, functional and neuropsychological studies is also discussed.

Keywords

Cerebellum Motor Sensory Organization Topography Clinical deficits 

References

  1. 1.
    Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Neurosci. 1998;21:370–5.PubMedGoogle Scholar
  2. 2.
    Grimaldi G, Manto M. Clinical and pathophysiological features of cerebellar dysfunction. In: Jankovic J, Albanese A, editors. Hyperkinetic disorders. Oxford: Blackwell Publishing Limited; 2011.Google Scholar
  3. 3.
    Colin F, Ris L, Godaux E. Neuroanatomy of the cerebellum. In: Manto MU, Pandolfo M, editors. The cerebellum and its disorders. Cambridge: Cambridge University Press; 2002. p. 6–29.Google Scholar
  4. 4.
    Jansen J. On cerebellar evolution and organization, from the point of view of a morphologist. In: Llinas E, editor. Neurobiology of cerebellar evolution and development. Chicago: AMA-ERF Inst Biomed RES; 1969. p. 881–93.Google Scholar
  5. 5.
    Dow RS. The evolution and anatomy of the cerebellum. Biol Rev. 1942;17:179–220.Google Scholar
  6. 6.
    Stoodley CJ, Schmahmann JD. Evidence for a topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.PubMedGoogle Scholar
  7. 7.
    Brodal A. Neurological anatomy in relation to clinical medicine. London: Oxford University Press; 1981.Google Scholar
  8. 8.
    Snider RS. Recent contributions to the anatomy and physiology of the cerebellum. Arch Neurol Psychiatry. 1950;64(2):196–219.PubMedGoogle Scholar
  9. 9.
    Ikeda M. Projections from the spinal and the principal sensory nuclei of the trigeminal nerve to the cerebellar cortex in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol. 1979;184(3):567–85.PubMedGoogle Scholar
  10. 10.
    Voogd J. Cerebellum and precerebellar nuclei. In: Paxinos G, Mai J, editors. The human nervous system. New York: Academic; 2004. p. 321–92.Google Scholar
  11. 11.
    Oscarsson O. Functional organization of the spino- and cuneocerebellar tracts. Physiol Rev. 1965;45:495–522.PubMedGoogle Scholar
  12. 12.
    Snider RS, Stowell A. Receiving areas of the tactile, auditory and visual systems in the cerebellum. J Neurophysiol. 1944;7:331–57.Google Scholar
  13. 13.
    Grodd W, Hülsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13(2):55–73.PubMedGoogle Scholar
  14. 14.
    Habas C, Axelrad H, Cabanis EA. The cerebellar second homunculus remains silent during passive bimanual movements. NeuroReport. 2004;15(10):1571–4.PubMedGoogle Scholar
  15. 15.
    Rijntjes M, Buechel C, Kiebel S, Weiller C. Multiple somatotopic representations in the human cerebellum. NeuroReport. 1999;10(17):3653–8.PubMedGoogle Scholar
  16. 16.
    Schlerf JE, Verstynen TD, Ivry RB, Spencer RM. Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol. 2010;103(6):3330–6.PubMedGoogle Scholar
  17. 17.
    Manto M. Cerebellar disorders. A practical approach to diagnosis and management. Cambridge: Cambridge University Press; 2010.Google Scholar
  18. 18.
    Andersen BB, Korbo L, Pakkenberg B. A quantitative study of the human cerebellum with unbiased stereological techniques. J Comp Neurol. 1992;326(4):549–60.PubMedGoogle Scholar
  19. 19.
    Herculano-Houzel S. Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat. 2010;10(4):12.Google Scholar
  20. 20.
    Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.PubMedGoogle Scholar
  21. 21.
    Glickstein M, May 3rd JG, Mercier BE. Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol. 1985;235(3):343–59.PubMedGoogle Scholar
  22. 22.
    Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.PubMedGoogle Scholar
  23. 23.
    Badre D, D’Esposito M. Is the rostro-caudal axis of the frontal lobe hierarchical? Nat Rev Neurosci. 2009;10(9):659–69.PubMedGoogle Scholar
  24. 24.
    Allen GI, Tsukahara N. Cerebrocerebellar communication systems. Physiol Rev. 1974;54:957–1005.PubMedGoogle Scholar
  25. 25.
    Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.PubMedGoogle Scholar
  26. 26.
    Bastian AJ, Thach WT. Structure and function of the cerebellum. In: Manto MU, Pandolfo M, editors. The cerebellum and its disorders. Cambridge: Cambridge University Press; 2002. p. 49–66.Google Scholar
  27. 27.
    Schmahmann JD. The cerebellum and cognition. San Diego: Academic; 1997.Google Scholar
  28. 28.
    Ebner TJ, Pasalar S. Cerebellum predicts the future motor state. Cerebellum. 2008;7(4):583–8.PubMedGoogle Scholar
  29. 29.
    Manto M. Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases. J Neuroeng Rehabil. 2009;6:10.PubMedGoogle Scholar
  30. 30.
    Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.PubMedGoogle Scholar
  31. 31.
    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.PubMedGoogle Scholar
  32. 32.
    Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, De Lisa M, Leggio MG. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7(4):611–5.PubMedGoogle Scholar
  33. 33.
    Molinari M, Leggio MG. Cerebellar information processing and visuospatial functions. Cerebellum. 2007;6(3):214–20.PubMedGoogle Scholar
  34. 34.
    Laforce Jr R, Buteau JP, Bouchard JP, Rouleau GA, Bouchard RW, Dupré N. Cognitive impairment in ARCA-1, a newly discovered pure cerebellar ataxia syndrome. Cerebellum. 2010;9(3):443–53.PubMedGoogle Scholar
  35. 35.
    Davis EE, Pitchford NJ, Jaspan T, McArthur D, Walker D. Development of cognitive and motor function following cerebellar tumour injury sustained in early childhood. Cortex. 2010;46(7):919–32.PubMedGoogle Scholar
  36. 36.
    Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.PubMedGoogle Scholar
  37. 37.
    Timmann D, Daum I. Cerebellar contributions to cognitive functions: a progress report after two decades of research. Cerebellum. 2007;6(3):159–62.PubMedGoogle Scholar
  38. 38.
    Timmann D, Konczak J, Ilg W, Donchin O, Hermsdörfer J, Gizewski ER, et al. Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience. 2009;162(3):836–51.PubMedGoogle Scholar
  39. 39.
    Furman JM, Wall 3rd C, Pang DL. Vestibular function in periodic alternating nystagmus. Brain. 1990;113(5):1425–39.PubMedGoogle Scholar
  40. 40.
    Waterson JA, Barnes GR, Grely MA. A quantitative study of eye and head movements during smooth pursuit in patients with cerebellar disease. Brain. 1992;115(5):1343–58.Google Scholar
  41. 41.
    Lewis RF, Zee DS. Ocular motor disorders associated with cerebellar lesions: pathophysiology and topical localization. Rev Neurol (Paris). 1993;149(11):665–77.Google Scholar
  42. 42.
    Vahedi K, Rivaud S, Amarenco P, Pierrot-Deseilligny C. Horizontal eye movement disorders after posterior vermis infarctions. J Neurol Neurosurg Psychiatry. 1995;58(1):91–4.PubMedGoogle Scholar
  43. 43.
    Pelisson D, Goffart L, Guillaume A. Contribution of the rostral fastigial nucleus to the control of orienting gaze shifts in the head-unrestrained cat. J Neurophysiol. 1998;80:1180–96.PubMedGoogle Scholar
  44. 44.
    Fuchs AF, Robinson F, Straube A. Participation of the caudal fastigial nucleus in smooth-pursuit eye movements: I. Neuronal activity. J Neurophysiol. 1994;72:2714–28.PubMedGoogle Scholar
  45. 45.
    Amarenco P, Roullet E, Hommel M, Chaine P, Marteau R. Infarction in the territory of the medial branch of the posterior inferior cerebellar artery. J Neurol Neurosurg Psychiatry. 1990;53:731–5.PubMedGoogle Scholar
  46. 46.
    Barth A, Bogousslavsky J, Regli F. Infarcts in the territory of the lateral branch of the posterior inferior cerebellar artery. J Neurol Neurosurg Psychiatry. 1994;57:1073–6.PubMedGoogle Scholar
  47. 47.
    Alahyane N, Fonteille V, Urquizar C, Salemme R, Nighoghossian N, Pelisson D, et al. Separate neural substrates in the human cerebellum for sensory-motor adaptation of reactive and of scanning voluntary saccades. Cerebellum. 2008;7(4):595–601.PubMedGoogle Scholar
  48. 48.
    Baier B, Stoeter P, Dieterich M. Anatomical correlates of ocular motor deficits in cerebellar lesions. Brain. 2009;132:2114–24.PubMedGoogle Scholar
  49. 49.
    Walker MF, Tian J, Shan X, Tamargo RJ, Ying H, Zee DS. Lesions of the cerebellar nodulus and uvula impair downward pursuit. J Neurophysiol. 2008;100(4):1813–23.PubMedGoogle Scholar
  50. 50.
    Sharpe JA. Neurophysiology and neuroanatomy of smooth pursuit: lesion studies. Brain Cogn. 2008;68(3):241–54.PubMedGoogle Scholar
  51. 51.
    Zentay PJ. Motor disorders of the central nervous system and their significance for speech: cerebral and cerebellar dysarthrias. Laryngoscope. 1937;47:147–56.Google Scholar
  52. 52.
    Lechtenberg R, Gilman S. Speech disorders in cerebellar disease. Ann Neurol. 1978;3:285–90.PubMedGoogle Scholar
  53. 53.
    Amarenco P, Chevrie-Muller C, Roullet E, Bousser MG. Paravermal infarct and isolated cerebellar dysarthria. Ann Neurol. 1991;30(2):211–3.PubMedGoogle Scholar
  54. 54.
    Lechtenberg R. Signs and symptom of cerebellar diseases. In: Lechtenberg R, editor. Handbook of cerebellar diseases. New York: Marcel Dekker; 1993. p. 31–43.Google Scholar
  55. 55.
    Ackermann H, Vogel M, Petersen D, Poremba M. Speech deficits in ischaemic cerebellar lesions. J Neurol. 1992;239:223–7.PubMedGoogle Scholar
  56. 56.
    Ackermann H, Mathiak K, Ivry RB. Temporal organization of “internal speech” as a basis for cerebellar modulation of cognitive functions. Behav Cogn Neurosci Rev. 2004;3:14–22.PubMedGoogle Scholar
  57. 57.
    Urban PP, Marx J, Hunsche S, Gawehn J, Vucurevic G, Wicht S, et al. Cerebellar speech representation: lesion topography in dysarthria as derived from cerebellar ischemia and functional magnetic resonance imaging. Arch Neurol. 2003;60:965–72.PubMedGoogle Scholar
  58. 58.
    Riecker A, Mathiak K, Wildgruber D, Erb M, Hertrich I, Grodd W, et al. fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology. 2005;64:700–6.PubMedGoogle Scholar
  59. 59.
    Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30(1):36–51.PubMedGoogle Scholar
  60. 60.
    Silfverskiöld BP. A 3 C/sec leg tremor in a “cerebellar” syndrome. Acta Neurol Scand. 1997;55(5):385–93.Google Scholar
  61. 61.
    Mauritz KH, Dichgans J, Hufschmidt A. Quantitative analysis of stance in late cortical cerebellar atrophy of the anterior lobe and other forms of cerebellar ataxia. Brain. 1979;102:461–82.PubMedGoogle Scholar
  62. 62.
    Harayama H, Ohno T, Miyatake T. Quantitative analysis of stance in ataxic myxoedema. J Neurol Neurosurg Psychiatry. 1983;46(6):579–81.PubMedGoogle Scholar
  63. 63.
    Manto M, Goldman S, Hildebrand J. Cerebellar gait ataxia following neuroleptic malignant syndrome. J Neurol. 1996;243(1):101–2.PubMedGoogle Scholar
  64. 64.
    Flament D, Hore J. Movement and electromyographic disorders associated with cerebellar dysmetria. J Neurophysiol. 1986;55(6):1221–33.PubMedGoogle Scholar
  65. 65.
    Flament D, Hore J. Comparison of cerebellar intention tremor under isotonic and isometric conditions. Brain Res. 1988;439(1–2):179–86.PubMedGoogle Scholar
  66. 66.
    Thach WT, Goodkin HG, Keating JG. Cerebellum and the adaptive coordination of movement. Ann Rev Neurosci. 1992;15:403–42.PubMedGoogle Scholar
  67. 67.
    Bastian AJ, Martin TA, Keating JK, Thach WT. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76:492–509.PubMedGoogle Scholar
  68. 68.
    Manto M, Van Den Braber N, Meuleman J, Lammertse P, Grimaldi G. Investigation of the adaptation to artificial damping in cerebellar ataxia using the myohaptic technology. In: IFMBE Proceedings. Springer, New York; 2009. pp. 448–451Google Scholar
  69. 69.
    Deluca C, Tinazzi M, Bovi P, Rizzuto N, Moretto G. Limb ataxia and proximal intracranial territory brain infarcts: clinical and topographical correlations. J Neurol Neurosurg Psychiatry. 2007;78(8):832–5.PubMedGoogle Scholar
  70. 70.
    Manto M, Godaux E, Jacquy J. Cerebellar hypermetria is larger when the inertial load is artificially increased. Ann Neurol. 1994;35(1):45–52.PubMedGoogle Scholar
  71. 71.
    Manto M, Van Den Braber N, Grimaldi G, Lammertse P. A new myohaptic instrument to assess wrist motion dynamically. Sensors. 2010;10(4):3180–94.PubMedGoogle Scholar
  72. 72.
    Diedrichsen J, Verstynen T, Lehman SL, Ivry RB. Cerebellar involvement in anticipating the consequences of self-produced actions during bimanual movements. J Neurophysiol. 2005;93(2):801–12.PubMedGoogle Scholar
  73. 73.
    Horak FB, Diener HC. Cerebellar control of postural scaling and central set in stance. J Neurophysiol. 1994;72:479–93.PubMedGoogle Scholar
  74. 74.
    Gilman S, Bloedel JR, Lechtenberg R. Disorders of the cerebellum. Contemporary neurology series. Philadelphia: F.A. Davis; 1981.Google Scholar
  75. 75.
    Diener HC, Dichgans J, Bacher M, Gompf B. Quantification of postural sway in normals and patients with cerebellar diseases. Electroencephalogr Clin Neurophysiol. 1984;57(2):134–42.PubMedGoogle Scholar
  76. 76.
    Dichgans J, Fetter M. Compartmentalized cerebellar functions upon the stabilization of body posture. Rev Neurol (Paris). 1993;149:654–64.Google Scholar
  77. 77.
    Bastian AJ, Morton S. Mechanisms of cerebellar gait ataxia. Cerebellum. 2007;6(1):79–86.PubMedGoogle Scholar
  78. 78.
    Trouillas P, Takayanagi T, Hallett M, et al. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci. 1997;145(2):205–11.PubMedGoogle Scholar
  79. 79.
    Ye BS, Kim YD, Nam HS, Lee HS, Nam CM, Heo JH. Clinical manifestations of cerebellar infarction according to specific lobular involvement. Cerebellum. 2010;(in press)Google Scholar
  80. 80.
    Bastian AJ, Mink JW, Kaufman BA, Thach WT. Posterior vermal split syndrome. Ann Neurol. 1998;44:601–10.PubMedGoogle Scholar
  81. 81.
    Jahn K, Deutschlander A, Stephan T, Strupp M, Wiesmann M, Brandt T. Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage. 2004;22:1722–31.PubMedGoogle Scholar
  82. 82.
    Ouchi Y, Okada H, Yoshikawa E, Nobezawa S, Futatsubashi M. Brain activation during maintenance of standing postures in humans. Brain. 1999;122(Pt. 2):329–38.PubMedGoogle Scholar
  83. 83.
    Amarenco P, Roullet E, Goujon C, Chéron F, Hauw JJ, Bousser MG. Infarction in the anterior rostral cerebellum (the territory of the lateral branch of the superior cerebellar artery). Neurology. 1991;41:253–8.PubMedGoogle Scholar
  84. 84.
    Sohn SI, Lee H, Lee SR, Baloh RW. Cerebellar infarction in the territory of the medial branch of the superior cerebellar artery. Neurology. 2006;66:115–7.PubMedGoogle Scholar
  85. 85.
    Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443–54.PubMedGoogle Scholar
  86. 86.
    Richter S, Gerwig M, Aslan B, Wilhelm H, Schoch B, Dimitrova A, et al. Cognitive functions in patients with MR-defined chronic focal cerebellar lesions. J Neurol. 2007;254(9):1193–203.PubMedGoogle Scholar
  87. 87.
    Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature. 1988;331(6157):585–9.PubMedGoogle Scholar
  88. 88.
    Karaci R, Oztürk S, Ozbakir S, Cansaran N. Evaluation of language functions in acute cerebellar vascular diseases. J Stroke Cerebrovasc Dis. 2008;17(5):251–6.PubMedGoogle Scholar
  89. 89.
    Timmann D, Daum I. How consistent are cognitive impairments in patients with cerebellar disorders? Behav Neurol. 2010;23(1–2):81–100.PubMedGoogle Scholar
  90. 90.
    de Ribaupierre S, Ryser C, Villemure JG, Clarke S. Cerebellar lesions: is there a lateralisation effect on memory deficits? Acta Neurochir (Wien). 2008;150(6):545–50.Google Scholar
  91. 91.
    Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.PubMedGoogle Scholar
  92. 92.
    Schweizer TA, Alexander MP, Cusimano M, Stuss DT. Fast and efficient visuotemporal attention requires the cerebellum. Neuropsychologia. 2007;45(13):3068–74.PubMedGoogle Scholar
  93. 93.
    Haarmeier T, Thier P. The attentive cerebellum—myth or reality? Cerebellum. 2007;6(3):177–83.PubMedGoogle Scholar
  94. 94.
    Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M. The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex. 2009;47:137–44.PubMedGoogle Scholar
  95. 95.
    Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M. Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain. 2008;131(Pt 5):1332–43.PubMedGoogle Scholar
  96. 96.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.PubMedGoogle Scholar
  97. 97.
    Schalling E, Hammarberg B, Hartelius L. A longitudinal study of dysarthria in spinocerebellar ataxia aspects of articulation, prosody and voice. J Med Speech Lang Pathol. 2008;16(2):103–17.Google Scholar
  98. 98.
    Schutter DJLG, van Honk J. The cerebellum on the rise of human emotion. Cerebellum. 2005;4:290–4.PubMedGoogle Scholar
  99. 99.
    Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123(Pt 5):1051–61.PubMedGoogle Scholar
  100. 100.
    Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123:1041–50.PubMedGoogle Scholar
  101. 101.
    Richter S, Schoch B, Kaiser O, Groetschel H, Dimitrova A, Hein-Kropp C, et al. Behavioral and affective changes in children and adolescents with chronic cerebellar lesions. Neurosci Lett. 2005;381(1–2):102–7.PubMedGoogle Scholar
  102. 102.
    Berntson GG, Potolicchio S, Miller N. Evidence for higher functions of the cerebellum: eating and grooming elicited by cerebellar stimulation in cats. Proc Natl Acad Sci USA. 1973;70:2497–9.PubMedGoogle Scholar
  103. 103.
    Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the processing of single words. J Cogn Neurosci. 1989;331:153–70.Google Scholar
  104. 104.
    Gebhart AL, Petersen SE, Thach WT. Role of the posterolateral cerebellum in language. Ann NY Acad Sci. 2002;978:318–33.PubMedGoogle Scholar
  105. 105.
    Habas C, Guillevin R, Abanou A. In vivo structural and functional imaging of the human rubral and inferior olivary nuclei: a mini-review. Cerebellum. 2010;9:167–73.PubMedGoogle Scholar
  106. 106.
    Chung SH, Kim CT, Hawkes R. Compartmentation of gaba-b receptor 2 expression in the mouse cerebellar cortex. Cerebellum. 2008;7:295–303.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Service de Neurologie, Unité d’Etude du Mouvement (UEM), ULB ErasmeBrusselsBelgium

Personalised recommendations