Skip to main content
Log in

c-Jun N-Terminal Kinase (JNK) and p38 Play Different Roles in Age-Related Purkinje Cell Death in Murine Organotypic Culture

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Several studies have shown that Purkinje cells die by apoptosis in organotypic slice cultures from postnatal 3-day-old (P3) mice. This cell death is age-dependent and has been proposed as indirect evidence for the programmed Purkinje cell death occurring in in vivo cerebellum. Here, we studied whether c-jun N-terminal kinase (JNK) and p38 kinase pathways contribute to the Purkinje cell death observed in cerebellar slice cultures obtained from P3 mice. Slice culture treatment with D-JNKI1 or SB203580, respectively inhibitors of JNK and p38 MAP kinases, results in a better survival of Purkinje cells. Interestingly, the combined treatment with the two inhibitors potentiated single treatment effects. These results suggest that p38 and JNK pathways might be differently implicated in this Purkinje cell death. Time course experiments found p38 activation immediately post-slicing, whereas JNK activation was detected only 2 h after the culture. We hypothesize that p38 activation might be due to the “sliced condition,” and JNK activation might be more specific to P3 age-dependent cell death. The study of JNK and p38 activation in cerebellar lysates from P0 slice culture confirmed JNK activation being specific for the P3 explants, whereas p38 is activated both from P0 and P3 cerebellar slice culture lysates. These results suggest that p38 is activated by the slicing, whereas JNK activation is related to developmental Purkinje cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci. 1991;14:453–501.

    Article  PubMed  CAS  Google Scholar 

  2. Ghoumari AM, Wehrle R, Bernard O, Sotelo C, Dusart I. Implication of Bcl-2 and caspase-3 in age-related Purkinje cell death in murine organotypic culture: an in vitro model to study apoptosis. Eur J Neurosci. 2000;12(8):2935–49.

    Article  PubMed  CAS  Google Scholar 

  3. Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. Microglia promote the death of developing Purkinje cells. Neuron. 2004;41(4):535–47.

    Article  PubMed  CAS  Google Scholar 

  4. Ghoumari AM, Wehrle R, De Zeeuw CI, Sotelo C, Dusart I. Inhibition of protein kinase C prevents Purkinje cell death but does not affect axonal regeneration. J Neurosci. 2002;22(9):3531–42.

    PubMed  CAS  Google Scholar 

  5. Ghoumari AM, Dusart I, El-Etr M, Tronche F, Sotelo C, Schumacher M, et al. Mifepristone (RU486) protects Purkinje cells from cell death in organotypic slice cultures of postnatal rat and mouse cerebellum. Proc Natl Acad Sci USA. 2003;100(13):7953–8.

    Article  PubMed  CAS  Google Scholar 

  6. Cao J, Semenova MM, Solovyan VT, Han J, Coffey ET, Courtney MJ. Distinct requirements for p38alpha and c-Jun N-terminal kinase stress-activated protein kinases in different forms of apoptotic neuronal death. J Biol Chem. 2004;279(34):35903–13.

    Article  PubMed  CAS  Google Scholar 

  7. Kuan CY, Yang DD, Samanta Roy DR, Davis RJ, Rakic P, Flavell RA. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron. 1999;22(4):667–76.

    Article  PubMed  CAS  Google Scholar 

  8. Sabapathy K, Jochum W, Hochedlinger K, Chang L, Karin M, Wagner EF. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev. 1999;89(1–2):115–24.

    Article  PubMed  CAS  Google Scholar 

  9. Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol. 2007;19(2):142–9.

    Article  PubMed  CAS  Google Scholar 

  10. Borsello T, Forloni G. JNK signalling: a possible target to prevent neurodegeneration. Curr Pharm Des. 2007;13(18):1875–86.

    Article  PubMed  CAS  Google Scholar 

  11. Haeusgen W, Boehm R, Zhao Y, Herdegen T, Waetzig V. Specific activities of individual c-Jun N-terminal kinases in the brain. Neuroscience. 2009;161(4):951–9.

    Article  PubMed  CAS  Google Scholar 

  12. Bendotti C, Tortarolo M, Borsello T. Targeting stress activated protein kinases, JNK and p38, as new therapeutic approach for neurodegenerative diseases. Cent Nerv Syst Agents Med Chem. 2006;6(2):109–17.

    Article  CAS  Google Scholar 

  13. Dusart I, Airaksinen MS, Sotelo C. Purkinje cell survival and axonal regeneration are age dependent: an in vitro study. J Neurosci. 1997;17(10):3710–26.

    PubMed  CAS  Google Scholar 

  14. Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 1991;37(2):173–82.

    Article  PubMed  CAS  Google Scholar 

  15. Bonny C, Oberson A, Negri S, Sauser C, Schorderet DF. Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death. Diabetes. 2001;50(1):77–82.

    Article  PubMed  CAS  Google Scholar 

  16. Dusart I, Guenet JL, Sotelo C. Purkinje cell death: differences between developmental cell death and neurodegenerative death in mutant mice. Cerebellum. 2006;5(2):163–73.

    Article  PubMed  Google Scholar 

  17. Fan H, Favero M, Vogel MW. Elimination of Bax expression in mice increases cerebellar Purkinje cell numbers but not the number of granule cells. J Comp Neurol. 2001;436(1):82–91.

    Article  PubMed  CAS  Google Scholar 

  18. Zanjani HS, Vogel MW, Delhaye-Bouchaud N, Martinou JC, Mariani J. Increased cerebellar Purkinje cell numbers in mice overexpressing a human bcl-2 transgene. J Comp Neurol. 1996;374(3):332–41.

    Article  PubMed  CAS  Google Scholar 

  19. Goswami J, Martin LA, Goldowitz D, Beitz AJ, Feddersen RM. Enhanced Purkinje cell survival but compromised cerebellar function in targeted anti-apoptotic protein transgenic mice. Mol Cell Neurosci. 2005;29(2):202–21.

    Article  PubMed  CAS  Google Scholar 

  20. Kitao Y, Hashimoto K, Matsuyama T, Iso H, Tamatani T, Hori O, et al. ORP150/HSP12A regulates Purkinje cell survival: a role for endoplasmic reticulum stress in cerebellar development. J Neurosci. 2004;24(6):1486–96.

    Article  PubMed  CAS  Google Scholar 

  21. Jankowski J, Miething A, Schilling K, Baader SL. Physiological purkinje cell death is spatiotemporally organized in the developing mouse cerebellum. Cerebellum. 2009;8(3):277–90.

    Article  PubMed  Google Scholar 

  22. de Bilbao F, Guarin E, Nef P, Vallet P, Giannakopoulos P, Dubois-Dauphin M. Postnatal distribution of cpp 32/caspase 3 mRNA in the mouse central nervous system: an in situ hybridization study. J Comp Neurol. 1999;409(3):339–57.

    Article  PubMed  Google Scholar 

  23. Legos JJ, McLaughlin B, Skaper SD, Strijbos PJ, Parsons AA, Aizenman E, et al. The selective p38 inhibitor SB-239063 protects primary neurons from mild to moderate excitotoxic injury. Eur J Pharmacol. 2002;447(1):37–42.

    Article  PubMed  CAS  Google Scholar 

  24. Kawasaki H, Morooka T, Shimohama S, Kimura J, Hirano T, Gotoh Y, et al. Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J Biol Chem. 1997;272(30):18518–21.

    Article  PubMed  CAS  Google Scholar 

  25. Chen RW, Qin ZH, Ren M, Kanai H, Chalecka-Franaszek E, Leeds P, et al. Regulation of c-Jun N-terminal kinase, p38 kinase and AP-1 DNA binding in cultured brain neurons: roles in glutamate excitotoxicity and lithium neuroprotection. J Neurochem. 2003;84(3):566–75.

    Article  PubMed  CAS  Google Scholar 

  26. Barone FC, Irving EA, Ray AM, Lee JC, Kassis S, Kumar S, et al. Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med Res Rev. 2001;21(2):129–45.

    Article  PubMed  CAS  Google Scholar 

  27. Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov. 2003;2(9):717–26.

    Article  PubMed  CAS  Google Scholar 

  28. Guan Z, Buckman SY, Pentland AP, Templeton DJ, Morrison AR. Induction of cyclooxygenase-2 by the activated MEKK1 –>SEK1/MKK4 –>p38 mitogen-activated protein kinase pathway. J Biol Chem. 1998;273(21):12901–8.

    Article  PubMed  CAS  Google Scholar 

  29. Badger AM, Roshak AK, Cook MN, Newman-Tarr TM, Swift BA, Carlson K, et al. Differential effects of SB 242235, a selective p38 mitogen-activated protein kinase inhibitor, on IL-1 treated bovine and human cartilage/chondrocyte cultures. Osteoarthritis Cartilage. 2000;8(6):434–43.

    Article  PubMed  CAS  Google Scholar 

  30. Choi WS, Eom DS, Han BS, Kim WK, Han BH, Choi EJ, et al. Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8- and -9-mediated apoptotic pathways in dopaminergic neurons. J Biol Chem. 2004;279(19):20451–60.

    Article  PubMed  CAS  Google Scholar 

  31. Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, et al. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med. 2003;9(9):1180–6.

    Article  PubMed  CAS  Google Scholar 

  32. Repici M, Centeno C, Tomasi S, Forloni G, Bonny C, Vercelli A, et al. Time-course of c-Jun N-terminal kinase activation after cerebral ischemia and effect of D-JNKI1 on c-Jun and caspase-3 activation. Neuroscience. 2007;150(1):40–9.

    Article  PubMed  CAS  Google Scholar 

  33. Ortolano F, Colombo A, Zanier ER, Sclip A, Longhi L, Perego C, et al. c-Jun N-terminal kinase pathway activation in human and experimental cerebral contusion. J Neuropathol Exp Neurol. 2009;68(9):964–71.

    Article  PubMed  CAS  Google Scholar 

  34. Repici M, Zanjani HS, Gautheron V, Borsello T, Dusart I, Mariani J. Specific JNK inhibition by D-JNKI1 protects Purkinje cells from cell death in Lurcher mutant mouse. Cerebellum. 2008;7(4):534–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Repici was supported by an FRM grant. Dr. Antoniou was supported by the Marie Curie Industry-Academia Partnerships and Pathways (IAPP) cPADS. This work has been financially supported by the CNRS, UPMC, and ANR-08-MNP-017. D-JNKI1 peptide was kindly provided by Istituto di Ricerche Farmacologiche “Mario Negri,” Milan, Italy. We thank Dr. Rudolf Kraftsik for statistical analysis and Dr. Flaviano Giorgini for critical comments on the manuscript.

Conflicts of Interest

The authors certify that there is no conflict of interest concerning the work presented in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Dusart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Repici, M., Wehrlé, R., Antoniou, X. et al. c-Jun N-Terminal Kinase (JNK) and p38 Play Different Roles in Age-Related Purkinje Cell Death in Murine Organotypic Culture. Cerebellum 10, 281–290 (2011). https://doi.org/10.1007/s12311-010-0244-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0244-z

Keywords

Navigation