Skip to main content
Log in

The Neural Substrate of Predictive Motor Timing in Spinocerebellar Ataxia

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The neural mechanisms involved in motor timing are subcortical, involving mainly cerebellum and basal ganglia. However, the role played by these structures in predictive motor timing is not well understood. Unlike motor timing, which is often tested using rhythm production tasks, predictive motor timing requires visuo-motor coordination in anticipation of a future event, and it is evident in behaviors such as catching a ball or shooting a moving target. We examined the role of the cerebellum and striatum in predictive motor timing in a target interception task in healthy (n = 12) individuals and in subjects (n = 9) with spinocerebellar ataxia types 6 and 8. The performance of the healthy subjects was better than that of the spinocerebellar ataxia. Successful performance in both groups was associated with increased activity in the cerebellum (right dentate nucleus, left uvula (lobule V), and lobule VI), thalamus, and in several cortical areas. The superior performance in the controls was related to activation in thalamus, putamen (lentiform nucleus) and cerebellum (right dentate nucleus and culmen—lobule IV), which were not activated either in the spinocerebellar subjects or within a subgroup of controls who performed poorly. Both the cerebellum and the basal ganglia are necessary for the predictive motor timing. The degeneration of the cerebellum associated with spinocerebellar types 6 and 8 appears to lead to quantitative rather than qualitative deficits in temporal processing. The lack of any areas with greater activity in the spinocerebellar group than in controls suggests that limited functional reorganization occurs in this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hore J, Watts S. Timing finger opening in over arm throwing based on a spatial representation of hand path. J Neurophysiol. 2005;93:3189–99.

    Article  PubMed  Google Scholar 

  2. Iacoboni M. Playing tennis with cerebellum. Nat Neurosci. 2001;4:555–6.

    Article  PubMed  CAS  Google Scholar 

  3. Harrington DL, Haaland KY. Neural underpinnings of temporal processing: a review of focal lesion, pharmacological, and functional imaging research. Rev Neurosci. 1999;10(2):91–116.

    Article  PubMed  CAS  Google Scholar 

  4. Holmes G. The cerebellum of man. Brain. 1939;62:1–30.

    Article  Google Scholar 

  5. Gibbon J, Malapani C, Dale CL, Gallistel C. Toward the neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol. 1997;7:170–84.

    Article  PubMed  CAS  Google Scholar 

  6. Matell MS, Meck WH. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Brain Res Cogn Brain Res. 2004;21:139–70.

    Article  PubMed  Google Scholar 

  7. Mauk MD, Buonomano DV. The neural basis for temporal processing. Annu Rev Neurosci. 2004;27:307–40.

    Article  PubMed  CAS  Google Scholar 

  8. Ivry RB, Spencer RMC. The neural representation of time. Curr Opin Neurobiol. 2004;14:225–32.

    Article  PubMed  CAS  Google Scholar 

  9. Braitenberg V. Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res. 1967;25:334–46.

    Article  PubMed  CAS  Google Scholar 

  10. Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Neurosci. 2005;6:297–311.

    Article  CAS  Google Scholar 

  11. Blakemore SJ, Sirigu A. Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res. 2003;153:239–45.

    Article  PubMed  Google Scholar 

  12. Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci. 2005;6:755–65.

    Article  PubMed  CAS  Google Scholar 

  13. Ivry RB, Keele SW. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1:136–52.

    Article  Google Scholar 

  14. Jueptner M, Rijntjes M, Weiller C, Faiss JH, Timmann D, Mueller SP, et al. Localization of a cerebellar timing process using PET. Neurology. 1995;45:1540–5.

    PubMed  CAS  Google Scholar 

  15. Meck WH. Neuropsychology of timing and time perception. Brain Cogn. 2005;58:1–8.

    Article  PubMed  Google Scholar 

  16. Pastor MA, Day BL, Macaluso E, Friston KJ, Frackowiak RSJ. The functional neuroanatomy of temporal discrimination. J Neurosci. 2004;24:2585–91.

    Article  PubMed  Google Scholar 

  17. Spencer RMC, Zelaznik HN, Diedrichsen J, Ivry RB. Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science. 2003;300:1437–9.

    Article  PubMed  CAS  Google Scholar 

  18. Meck WH, Benson AM. Dissecting the brain's internal clock: how frontal–striatal circuitry keeps time and shifts attention. Brain Cogn. 2002;48(1):195–211.

    Article  PubMed  Google Scholar 

  19. Harrington DL, Haaland KY, Hermanowitz M. Temporal processing in the basal ganglia. Neuropsychology. 1998;12:3–12.

    Article  PubMed  CAS  Google Scholar 

  20. Malapani C, Rakitin B, Levy R, Meck WH, Deweer B, Dubois B, et al. Coupled temporal memories in Parkinson's disease: a dopamine-related dysfunction. J Cogn Neurosci. 1998;10:316–31.

    Article  PubMed  CAS  Google Scholar 

  21. O’Boyle DJ, Freeman JS, Cody FW. The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson's disease. Brain. 1996;119:51–70.

    Article  PubMed  Google Scholar 

  22. Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT. Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain. 2004;127:561–74.

    Article  PubMed  Google Scholar 

  23. Ferrandez AM, Huqueville L, Lehericy S, Poline JB, Marsault C, Pouthas V. Basal ganglia and supplementary motor area subtend duration perception: an fMRI study. Neuroimage. 2003;19(4):1532–44.

    Article  PubMed  CAS  Google Scholar 

  24. Livesey AC, Wall MB, Smith AT. Time perception: manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia. 2007;45:321–31.

    Article  PubMed  Google Scholar 

  25. Nenadic I, Gaser C, Volz HP, Rammsayer T, Häger F, Sauer H. Processing of temporal information and the basal ganglia: new evidence from fMRI. Exp Brain Res. 2003;148:238–46.

    PubMed  Google Scholar 

  26. Jahanshahi M, Jones C, Dirnberger G, Frith C. The substantia nigra pars compacta and temporal processing. J Neurosci. 2006;26(47):12266–73.

    Article  PubMed  CAS  Google Scholar 

  27. Ivry RB. The representation of temporal information in perception and motor control. Cur Opin Neurobiol. 1996;6:851–7.

    Article  CAS  Google Scholar 

  28. Lewis PA, Miall RC. A right hemispheric prefrontal system for cognitive time measurement. Behav Processes. 2006;71:226–34.

    Article  PubMed  CAS  Google Scholar 

  29. O’Reilly JX, Mesulam MM, Nobre AC. The cerebellum predicts the timing of perceptual events. J Neurosci. 2008;28(9):2252–60.

    Article  PubMed  Google Scholar 

  30. Leon MI, Shadlen MN. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron. 2003;38:8432–44.

    Article  Google Scholar 

  31. Maschke M, Oehlert G, Xie TD, Perlman S, Subramony SH, Kumar N, et al. Clinical feature profile of spinocerebellar ataxia type 1–8 predicts genetically defined subtypes. Mov Disord. 2005;20:1405–12.

    Article  PubMed  Google Scholar 

  32. Bares M, Lungu O, Liu T, Waechter T, Gomez CM, Ashe J. Impaired predictive motor timing in patients with cerebellar disorders. Exp Brain Res. 2007;180(2):356–65.

    Article  Google Scholar 

  33. Bares M, Lungu OV, Husarova I, Gescheidt T. Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson's disease. Cerebellum. 2010;9(1):124–35.

    Article  PubMed  Google Scholar 

  34. Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci. 1997;145:205–11.

    Article  PubMed  CAS  Google Scholar 

  35. Oldfield RC. The assessment and analysis of handeness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.

    Article  PubMed  CAS  Google Scholar 

  36. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatr. 1979;134:382–9.

    Article  CAS  Google Scholar 

  37. Talairach J, Tournoux P. Co-planar stereotactic atlas of the human brain. Stuttgart: Georg Thieme Verlag; 1988.

    Google Scholar 

  38. Penny W, Holmes A. Random-effects analysis. In: Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Friston KJ, Price CJ, Zeki S, Ashburner J, Penny W, editors. Human brain function, chap 42. 2nd ed. London: Academic; 2003. p. 843–50.

    Google Scholar 

  39. Miall RC, Weir DJ, Wolpert DM, Stein JF. Is the cerebellum a smith predictor? J Mot Behav. 1993;25:203–16.

    Article  PubMed  CAS  Google Scholar 

  40. Bastian AJ. Learning to predict future: the cerebellum adapts feed-forward movement control. Curr Opin Neurobiol. 2006;16:645–9.

    Article  PubMed  CAS  Google Scholar 

  41. Nixon PD. Predicting sensory events. The role of the cerebellum in motor learning. Exp Brain Res. 2001;138:251–7.

    Article  PubMed  CAS  Google Scholar 

  42. Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J. The role of the cerebellum for predictive control of grasping. Cerebellum. 2007;6:7–17.

    Article  PubMed  Google Scholar 

  43. Nowak DA, Hufnagel A, Ameli M, Timmann D, Hermsdörfer J. Interhemispheric transfer of predictive force control during grasping in cerebellar disorders. Cerebellum. 2009;8(2):108–15.

    Article  PubMed  Google Scholar 

  44. Bo J, Block HJ, Clark JE, Bastian AJ. A cerebellar deficit in sensorimotor prediction explains movement timing variability. J Neurophysiol. 2008;100(5):2825–32.

    Article  PubMed  Google Scholar 

  45. Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2:338–47.

    Article  PubMed  CAS  Google Scholar 

  46. Lewis PA, Miall RC. Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia. 2003;41(12):1583–92.

    Article  PubMed  CAS  Google Scholar 

  47. Xu D, Liu T, Ashe J, Bushara KO. Role of the olivo-cerebellar system in timing. J Neurosci. 2006;26:5990–5.

    Article  PubMed  CAS  Google Scholar 

  48. Mathiak K, Hertrich I, Grodd W, Ackermann H. Cerebellum and speech perception: a functional magnetic resonance imaging study. J Cogn Neurosci. 2002;14(6):902–12.

    Article  PubMed  Google Scholar 

  49. Perrett SP, Ruiz BP, Mauk MD. Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci. 1993;13:1708–18.

    PubMed  CAS  Google Scholar 

  50. Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, et al. Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci. 2005;25:3919–31.

    Article  PubMed  CAS  Google Scholar 

  51. Timmann D, Watts S, Hore J. Failure of cerebellar patients to time finger opening precisely causes ball high–low inaccuracy in overarm throws. J Neurophysiol. 1999;82(1):103–14.

    PubMed  CAS  Google Scholar 

  52. Ullen F, Forssberg H, Erhsson HH. Neural networks for the coordination of the hands in time. J Neurophysiol. 2003;89(2):1126–35.

    Article  PubMed  Google Scholar 

  53. Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR. Distributed neural systems underlying the timing of movements. J Neurosci. 1997;17(14):5528–35.

    PubMed  CAS  Google Scholar 

  54. Edelstyn NM, Ellis SJ, Jenkinson P, Sawyer A. Contribution of the left dorsomedial thalamus to recognition memory: a neuropsychological case study. Neurocase. 2002;8(6):442–52.

    Article  PubMed  CAS  Google Scholar 

  55. Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol. 2003;13:250–5.

    Article  PubMed  CAS  Google Scholar 

  56. Manto MU. On the cerebello-cerebral interactions. Cerebellum. 2007;5(4):286–8.

    Article  Google Scholar 

  57. Daly JJ, Wolpaw JR. Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 2008;7(11):1032–43.

    Article  PubMed  Google Scholar 

  58. Grant MP, Leigh RJ, Seidman SH, Riley DE, Hanna JP. Comparison of predictable smooth ocular and combined eye-head tracking behaviour in patients with lesions affecting the brainstem and cerebellum. Brain. 1992;115:1323–42.

    Article  PubMed  Google Scholar 

  59. Townsend J, Courchesne E, Covington J, Westerfield M, Harris NS, Lyden P, et al. Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci. 1999;19:5632–43.

    PubMed  CAS  Google Scholar 

  60. Lilja A, Hamalainen P, Kaitaranta E, Rinne R. Cognitive impairment in spinocerebellar ataxia type 8. J Neurol Sci. 2005;237(1–2):31–8.

    Article  PubMed  Google Scholar 

  61. Kawai Y, Suenaga M, Watanabe H, Ito M, Kato K, Kato T, et al. Prefrontal hypoperfusion and cognitive dysfunction correlates in spinocerebellar ataxia type 6. J Neurol Sci. 2008;271(1–2):68–74.

    Article  PubMed  CAS  Google Scholar 

  62. Suenaga M, Kawai Y, Watanabe H, Atsuta N, Ito M, Tanaka F, et al. Cognitive impairment in spinocerebellar ataxia type 6. J Neurol Neurosurg Psychiatry. 2008;79(5):496–9.

    Article  PubMed  CAS  Google Scholar 

  63. Garrard P, Martin NH, Giunti P, Cipolotti L. Cognitive and social cognitive functioning in spinocerebellar ataxia—a preliminary characterization. J Neurol. 2008;255(3):398–405.

    Article  PubMed  CAS  Google Scholar 

  64. Werner S, Bock O, et al. The effect of cerebellar cortical degeneration on adaptive plasticity and movement control. Exp Brain Res. 2009;193(2):189–96.

    Article  PubMed  Google Scholar 

  65. Huang C. Implications on cerebellar function from information coding. Cerebellum. 2008;7(3):314–31.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by NIH grant NS40106, MH065598, the Department of Veterans Affairs, the Brain Sciences Chair, Proshek-Fulbright grant, Academia Medica Pragensis Foundation, and by MSM0021622404.

Conflict of Interest

There are no potential conflicts of interest in the submission and no financial and personal relationship that might bias our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bares, M., Lungu, O.V., Liu, T. et al. The Neural Substrate of Predictive Motor Timing in Spinocerebellar Ataxia. Cerebellum 10, 233–244 (2011). https://doi.org/10.1007/s12311-010-0237-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0237-y

Keywords

Navigation