Skip to main content
Log in

Models of Calcium Dynamics in Cerebellar Granule Cells

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Intracellular calcium dynamics is critical for many functions of cerebellar granule cells (GrCs) including membrane excitability, synaptic plasticity, apoptosis, and regulation of gene transcription. Recent measurements of calcium responses in GrCs to depolarization and synaptic stimulation reveal spatial compartmentalization and heterogeneity within dendrites of these cells. However, the main determinants of local calcium dynamics in GrCs are still poorly understood. One reason is that there have been few published studies of calcium dynamics in intact GrCs in their native environment. In the absence of complete information, biophysically realistic models are useful for testing whether specific Ca2+ handling mechanisms may account for existing experimental observations. Simulation results can be used to identify critical measurements that would discriminate between different models. In this review, we briefly describe experimental studies and phenomenological models of Ca2+ signaling in GrC, and then discuss a particular biophysical model, with a special emphasis on an approach for obtaining information regarding the distribution of Ca2+ handling systems under conditions of incomplete experimental data. Use of this approach suggests that Ca2+ channels and fixed endogenous Ca2+ buffers are highly heterogeneously distributed in GrCs. Research avenues for investigating calcium dynamics in GrCs by a combination of experimental and modeling studies are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iyer V, Hoogland TM, Saggau P. Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy. J Neurophysiol. 2006;95:535–45.

    PubMed  Google Scholar 

  2. Ding JB, Takasaki KT, Sabatini BL. Supraresolution imaging in brain slices using stimulated-emission depletion 2-photon laser scanning microscopy. Neuron. 2009;63:429–37.

    PubMed  CAS  Google Scholar 

  3. Wallace DJ, Meyer zum Alten Borgloh S, Astori S, Yang Y, Bausen M, Kügler S, et al. Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nat Meth. 2008;5:797–804.

    CAS  Google Scholar 

  4. Grewe BF, Helmchen F. Optical probing of neuronal ensemble activity. Curr Opin Neurobiol. 2009;19:520–9.

    PubMed  CAS  Google Scholar 

  5. Tour O, Adams SR, Kerr RA, Meijer RM, Sejnowski TJ, Tsien RW, et al. Calcium Green FlAsH as a genetically targeted small-molecule calcium indicator. Nat Chem Biol. 2007;3:423–31.

    PubMed  CAS  Google Scholar 

  6. Higley MJ, Sabatini BL. Calcium signaling in dendrites and spines: practical and functional considerations. Neuron. 2008;59:902–13.

    PubMed  CAS  Google Scholar 

  7. Augustine GJ, Santamaria F, Tanaka K. Local calcium signaling in neurons. Neuron. 2003;40:331–46.

    PubMed  CAS  Google Scholar 

  8. Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev. 2006;86:369–408.

    PubMed  CAS  Google Scholar 

  9. Friel DD, Chiel HJ. Calcium dynamics: analyzing the Ca2+ regulatory network in intact cells. Trends Neurosci. 2008;31:8–19.

    PubMed  CAS  Google Scholar 

  10. Herculano-Houzel S, Lent R. Isotropic fractionator: a simple, rapid method for the quantification of total cell numbers in the brain. J Neurosci. 2005;25:2518–21.

    PubMed  CAS  Google Scholar 

  11. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513:532–41.

    PubMed  Google Scholar 

  12. Andersen BB, Gundersen HJ, Pakkenberg B. Aging of the human cerebellum: a stereological study. J Comp Neurol. 2003;466:356–65.

    PubMed  Google Scholar 

  13. Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B. Neocortical glial cell numbers in human brains. Neurobiol Aging. 2008;29:1754–62.

    PubMed  CAS  Google Scholar 

  14. Sato M, Suzuki K, Yamazaki H, Nakanishi S. A pivotal role of calcineurin signaling in development and maturation of postnatal cerebellar granule cells. Proc Natl Acad Sci USA. 2005;102:5874–9.

    PubMed  CAS  Google Scholar 

  15. Nakanishi S, Okazawa M. Membrane potential-regulated Ca2+ signalling in development and maturation of mammalian cerebellar granule cells. J Physiol. 2006;575(Pt 2):389–95.

    PubMed  CAS  Google Scholar 

  16. Mintz IM, Sabatini BL, Regehr WG. Calcium control of transmitter release at a cerebellar synapse. Neuron. 1995;15:675–88.

    PubMed  CAS  Google Scholar 

  17. Atluri PP, Regehr WG. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J Neurosci. 1996;16:5661–71.

    PubMed  CAS  Google Scholar 

  18. Gall D, Prestori F, Sola E, D’Errico A, Roussel C, Forti L, et al. Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage. J Neurosci. 2005;25:4813–22.

    PubMed  CAS  Google Scholar 

  19. Gall D, Roussel C, Susa I, D’Angelo E, Rossi P, Bearzatto B, et al. Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin. J Neurosci. 2003;23:9320–7.

    PubMed  CAS  Google Scholar 

  20. Budd SL, Nicholls DG. Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem. 1996;67:2282–91.

    PubMed  CAS  Google Scholar 

  21. Bawa B, Abbott LC. Analysis of calcium ion homeostasis and mitochondrial function in cerebellar granule cells of adult CaV 2.1 calcium ion channel mutant mice. Neurotox Res. 2008;13:1–18.

    PubMed  CAS  Google Scholar 

  22. Contestabile A. Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro. Cerebellum. 2002;1:41–55.

    PubMed  CAS  Google Scholar 

  23. Mugnaini E. The histology and cytology of the cerebellar cortex. In: Larsell O, Jansen J, editors. Comparative anatomy and histology of the cerebellum. The human cerebellum, cerebellar connections and cerebellar cortex. Minneapolis: The University of Minnesota Press; 1972. p. 201–51.

    Google Scholar 

  24. Saviane C, Silver RA. Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature. 2006;439:983–7.

    PubMed  CAS  Google Scholar 

  25. Chadderton P, Margrie TW, Häusser M. Integration of quanta in cerebellar granule cells during sensory processing. Nature. 2004;428:856–60.

    PubMed  CAS  Google Scholar 

  26. Jörntell H, Ekerot CF. Properties of somatosensory synaptic integration in cerebellar granule calls in vivo. J Neurosci. 2006;26:11786–97.

    PubMed  Google Scholar 

  27. Palay SL, Chan-Palay V. Cerebellar cortex. Berlin: Springer; 1974.

    Google Scholar 

  28. Jakab RL, Hámori J. Quantitative morphology and synaptology of cerebellar glomeruli in rat. Anat Embryol (Berl). 1988;179:81–8.

    CAS  Google Scholar 

  29. Cathala L, Brickley S, Cull-Candy S, Farrant M. Maturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse. J Neurosci. 2003;23:6074–85.

    PubMed  CAS  Google Scholar 

  30. Cathala L, Holderith NB, Nusser Z, DiGregorio DA, Cull-Candy SG. Changes in synaptic structure underlie the developmental speeding of AMPA receptor-mediated EPSCs. Nat Neurosci. 2005;8:1310–8.

    PubMed  CAS  Google Scholar 

  31. Sommer B, Köhler M, Sprengel R, Seeburg PH. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell. 1991;67:11–9.

    PubMed  CAS  Google Scholar 

  32. Longone P, Impagnatiello F, Mienville JM, Costa E, Guidotti A. Changes in AMPA receptor-spliced variant expression and shift in AMPA receptor spontaneous desensitization pharmacology during cerebellar granule cell maturation in vitro. J Mol Neurosci. 1998;11:23–41.

    PubMed  CAS  Google Scholar 

  33. Cull-Candy S, Kelly L, Farrant M. Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr Opin Neurobiol. 2006;16:288–97.

    PubMed  CAS  Google Scholar 

  34. Smith TC, Wang LY, Howe JR. Distinct kainate receptor phenotypes in immature and mature mouse cerebellar granule cells. J Physiol. 1999;517(Pt 1):51–8.

    PubMed  CAS  Google Scholar 

  35. DiGregorio DA, Nusser Z, Silver RA. Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron. 2002;35:521–33.

    PubMed  CAS  Google Scholar 

  36. Burnashev N, Zhou Z, Neher E, Sakmann B. Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainite receptor subtypes. J Physiol. 1995;485:403–18.

    PubMed  CAS  Google Scholar 

  37. Randall A, Tsien RW. Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neruosci. 1995;15:2995–3012.

    CAS  Google Scholar 

  38. Rossi P, D’Angelo E, Magistretti J, Toselli M, Taglietti V. Age-dependent expression of high-voltage activated calcium currents during cerebellar granule cell development in situ. Pflügers Arch. 1994;429:107–16.

    PubMed  CAS  Google Scholar 

  39. Brown SP, Safo PK, Regehr WD. Endocannabinoids inhibit transmission at granule cell to Purkinje cell synapses by modulating three types of presynaptic calcium channels. J Neurosci. 2004;24:5623–31.

    PubMed  CAS  Google Scholar 

  40. Kulik A, Nakadate K, Hagiwara A, Fukazawa Y, Luján R, Saito H, et al. Immunocytochemical localization of the α1A subunit of the P/Q-type calcium channel in the rat cerebellum. Eur J Neurosci. 2004;19:2169–78.

    PubMed  Google Scholar 

  41. Bawa B, Abbott LC. Alterations in intracellular calcium ion concentrations in cerebellar granule cells of the CACNA1A mutant mouse, leaner, during postnatal development. Neurotox Res 2009; in press.

  42. Guerini D, Coletto L, Carafoli E. Exporting calcium from cells. Cell Calcium. 2005;38:281–9.

    PubMed  CAS  Google Scholar 

  43. Kiedrowski L, Czyż A, Baranauskas G, Li XF, Lytton J. Differential contribution of plasmalemmal Na+/Ca2+ exchange isoforms to sodium-dependent calcium influx and NMDA excitotoxicity in depolarized neurons. J Neurochem. 2004;90:117–28.

    PubMed  CAS  Google Scholar 

  44. Guerini D, Garcia-Martin E, Gerber A, Volbracht C, Leist M, Merino CG, et al. The expression of plasma membrane Ca2+ pump isoforms in cerebellar granule neurons is modulated by Ca2+. J Biol Chem. 1999;273:1667–76.

    Google Scholar 

  45. Marcos D, Sepulveda MR, Berrocal M, Mata AM. Ontogeny of ATP hydrolysis and isoform expression of the plasma membrane Ca2+-ATPase in mouse brain. BMC Neurosci. 2009;10:112.

    PubMed  Google Scholar 

  46. Hillman DE, Chen S, Bing R, Penniston JT, Llinas R. Ultrastuctural localization of the plasmalemmal calcium pump in cerebellar neurons. Neuroscience. 1996;72:315–24.

    PubMed  CAS  Google Scholar 

  47. Burette AC, Strehler EE, Weinberg RJ. “Fast” plasma membrane calcium pump PMCA2a concentrates in GABAergic terminals in the adult rat brain. J Comp Neurol. 2009;512:500–13.

    PubMed  Google Scholar 

  48. Ivannikov MV, Sugimori H, Llinas RR. Calcium clearance and its energy requirements in cerebellar neurons. Cell Calcium. 2010;47:507–13.

    PubMed  CAS  Google Scholar 

  49. Visser F, Lytton J. K+-dependent Na+/Ca2+ exchangers: key contributors to Ca2+ signaling. Physiology (Bethesda). 2007;22:185–92.

    CAS  Google Scholar 

  50. Seil FJ, Herndon RM. Cerebellar granule cells in vitro. A light and electron microscope study. J Cell Biol. 1970;45:212–20.

    PubMed  CAS  Google Scholar 

  51. Hajós F, Kerpel-Fronius S. Electron microscope histochemical evidence for a partial or total block of the tricarboxylic acid cycle in the mitochondria of presynaptic axon terminals. J Cell Biol. 1971;51:216–22.

    PubMed  Google Scholar 

  52. Fiala JC, Harris KM. Dendrite structure. In: Stuart G, Spruston N, Häusser M, editors. Dendrites. Oxford: Oxford University Press; 1999. p. 1–34.

    Google Scholar 

  53. Irving AJ, Collingridge GL, Schofield JG. Interactions between Ca2+ mobilizing mechanisms in cultured rat cerebellar granule cells. J Physiol. 1992;456:667–80.

    PubMed  CAS  Google Scholar 

  54. Simpson PB, Nahorski SR, Challiss RA. Agonist-evoked Ca2+ mobilization from stores expressing inositol 1, 4, 5-trisphosphate receptors and ryanodine receptors in cerebellar granule neurones. J Neurochem. 1996;67:363–73.

    Google Scholar 

  55. Kirischuk S, Voitenko N, Kostyuk P, Verkhratsky A. Calcium signalling in granule neurones studied in cerebellar slices. Cell Calcium. 1996;19:59–71.

    PubMed  CAS  Google Scholar 

  56. Aronica E, Nicoletti F, Condorelli DF, Balázs R. Pharmacological characterization of metabotropic glutamate receptors in cultured cerebellar granule cells. Neurochem Res. 1993;18:605–12.

    PubMed  CAS  Google Scholar 

  57. Verkhratsky A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev. 2005;85:201–79.

    PubMed  CAS  Google Scholar 

  58. del Río E, McLaughlin M, Downes CP, Nicholls DG. Differential coupling of G-protein-linked receptors to Ca2+ mobilization through inositol(1, 4, 5)trisphosphate or ryanodine receptors in cerebellar granule cells in primary culture. Eur J Neurosci. 1999;11:3015–22.

    PubMed  Google Scholar 

  59. Masgrau R, Servitja JM, Young KW, Pardo R, Sarri E, Nahorski SR, et al. Characterization of the metabotropic glutamate receptors mediating phospholipase C activation and calcium release in cerebellar granule cells: calcium-dependence of the phospholipase C response. Eur J Neurosci. 2001;13:248–56.

    PubMed  CAS  Google Scholar 

  60. Berthele A, Laurie DJ, Platzer S, Zieglgänsberg W, Tölle TR, Sommer B. Differential expression of rat and human type I metabotropic glutamate receptor splice variant messenger RNAs. Neuroscience. 1998;85:733–49.

    PubMed  CAS  Google Scholar 

  61. Takemura M, Kitanaka N, Kitanaka J. Signal transduction by histamine in the cerebellum and its modulation by N-methyltransferase. Cerebellum. 2003;2:39–43.

    PubMed  CAS  Google Scholar 

  62. Schambra UB, Mackensen GB, Stafford-Smith M, Haines DE, Schwinn DA. Neuron specific alpha-adrenergic receptor expression in human cerebellum: implications for emerging cerebellar roles in neurologic disease. Neuroscience. 2005;135:507–23.

    PubMed  CAS  Google Scholar 

  63. Takayasu Y, Iino M, Furuya N, Ozawa S. Muscarine-induced increase in frequency of spontaneous EPSCs in Purkinje cells in the vestibulo-cerebellum of the rat. J Neurosci. 2003;23:6200–8.

    PubMed  CAS  Google Scholar 

  64. Baude A, Nusser Z, Robers JD, Mulvihill E, McIlhinney RA, Somagyi P. The metabotropic glutamate receptor (mGluR1α) is concentrated at perisynaptic membrane of neuronal subpopulations detected by immunogold reaction. Neuron. 1993;11:771–87.

    PubMed  CAS  Google Scholar 

  65. Furuichi T, Furutama D, Hakamata Y, Nakai J, Tekeshima H, Mikoshiba K. Multiple types of ryanodine receptor/Ca2+ release channels are differentially expressed in rabbit brain. J Neurosci. 1994;14:4794–805.

    PubMed  CAS  Google Scholar 

  66. Sammels E, Parys JB, Missiaen L, De Smedt H, Bultynck G. Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium. 2010;47:297–314.

    PubMed  CAS  Google Scholar 

  67. Fagni L, Chavis P, Ango F, Bockaert J. Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci. 2000;23:80–8.

    PubMed  CAS  Google Scholar 

  68. Krause KH, Michalak M. Calreticulin. Cell. 1997;88:439–43.

    PubMed  CAS  Google Scholar 

  69. Singaravelu K, Lohr C, Deitmer JW. Calcium-independent phospholipase A2 mediates store-operated calcium entry in rat cerebellar granule cells. Cerebellum. 2008;7:467–81.

    PubMed  CAS  Google Scholar 

  70. Pinilla PJ, Hernandez AT, Camello MC, Pozo MJ, Toescu EC, Camello PJ. Non-stimulated Ca2+ leak pathway in cerebellar granule neurones. Biochem Pharmacol. 2005;70:786–93.

    PubMed  CAS  Google Scholar 

  71. Szikra T, Cusato K, Thoreson WB, Barabas P, Bartoletti TM, Krizaj D. Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors. J Physiol. 2008;586(Pt 20):4859–75.

    PubMed  CAS  Google Scholar 

  72. Baba A, Yasui T, Fujisawa S, Yamada RX, Yamada MK, Nishiyama N, et al. Activity-evoked capacitative Ca2+ entry: implications in synaptic plasticity. J Neurosci. 2003;23:7737–41.

    PubMed  CAS  Google Scholar 

  73. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol. 2005;169:435–45.

    PubMed  CAS  Google Scholar 

  74. Brandman O, Liou J, Park WS, Meyer T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell. 2007;131:1327–39.

    PubMed  CAS  Google Scholar 

  75. Skibinska-Kijek A, Wisniewska MB, Gruszczynska-Biegala J, Methner A, Kuznicki J. Immunolocalization of STIM1 in the mouse brain. Acta Neurobiol Exp (Wars). 2009;69:413–28.

    Google Scholar 

  76. Celsi F, Pizzo P, Brini M, Leo S, Fotino G, Pinton P, et al. Mitochondria, calcium and cell death: a deady triad in neurodegeneration. Biochim Biophys Acta. 2009;1787:335–44.

    PubMed  CAS  Google Scholar 

  77. Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am J Physiol. 1990;258:C755–86.

    PubMed  CAS  Google Scholar 

  78. Colegrove SL, Albrecht MA, Friel DD. Dissection of mitochondrial Ca2+ uptake and release fluxes in situ after depolarization-evoked [Ca2+] i elevations in sympathetic neurons. J Gen Physiol. 2000;115:351–70.

    PubMed  CAS  Google Scholar 

  79. Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 1995;15:961–73.

    PubMed  CAS  Google Scholar 

  80. Khodorov B, Pinelis V, Storozhevykh T, Yuravichus A, Khaspekhov L. Blockade of mitochondrial Ca2+ uptake by mitochondrial inhibitors amplifies the glutamate-induced calcium response in cultured cerebellar granule cells. FEBS Lett. 1999;458:162–6.

    PubMed  CAS  Google Scholar 

  81. Nicholls DG, Budd SL, Ward MW, Castilho RF. Excitotoxicity and mitochondria. Biochem Soc Symp. 1999;66:55–67.

    PubMed  CAS  Google Scholar 

  82. Nicholls DG, Vesce S, Kirk L, Chalmers S. Interactions between mitochondrial bioenergetics and cytoplasmic calcium in cultured cerebellar granule cells. Cell Calcium. 2003;34:407–24.

    PubMed  CAS  Google Scholar 

  83. Kushnareva YE, Wiley SE, Ward MW, Andreyev AY, Murphy AN. Excitotoxic injury to mitochondria isolated from cultured neurons. J Biol Chem. 2005;280:28894–902.

    PubMed  CAS  Google Scholar 

  84. Hardingham GE. Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem Soc Trans. 2009;37(Pt 6):1147–60.

    PubMed  CAS  Google Scholar 

  85. Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci. 1998;1:366–73.

    PubMed  CAS  Google Scholar 

  86. Jekabsons MB, Nicholls DG. Bioenergetic analysis of cerebellar granule neurons undegoing apoptosis by potassium/serum deprivation. Cell Death Differ. 2006;13:1595–610.

    PubMed  CAS  Google Scholar 

  87. Kalia LV, Kalia SK, Salter MW. NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol. 2008;7:742–55.

    PubMed  CAS  Google Scholar 

  88. Monti B, Contestabile A. Blockade of the NMDA receptor increases developmental apoptic elimination of granule neurons and activates caspases in the rat cerebellum. Eur J Neurosci. 2000;12:3117–23.

    PubMed  CAS  Google Scholar 

  89. Lafon-Cazal M, Perez V, Bockaert J, Marin P. Akt mediates the anti-apoptic effect of NMDA but not that induced by potassium depolarization in cultured cerebellar granule cells. Eur J Neurosci. 2002;16:575–83.

    PubMed  Google Scholar 

  90. Bastianelli E. Distribution of calcium-binding proteins in the cerebellum. Cerebellum. 2003;2:242–62.

    PubMed  CAS  Google Scholar 

  91. Arai R, Winsky L, Arai M, Jacobowitz DM. Immunohistochemical localization of calretinin in the rat hindbrain. J Comp Neurol. 1991;310:21–44.

    PubMed  CAS  Google Scholar 

  92. Rogers JH. Immunoreactivity for calretinin and other calcium-binding proteins in the cerebellum. Neuroscience. 1989;31:711–21.

    PubMed  CAS  Google Scholar 

  93. Fortin M, Marchand R, Parent A. Calcium-binding proteins in primate cerebellum. Neurosci Res. 1998;30:155–68.

    PubMed  CAS  Google Scholar 

  94. Faas GC, Schwaller B, Vergara JL, Mody I. Resolving the fast kinetics of cooperative binding: Ca2+ buffering by calretinin. PLoS Biol. 2007;5:e311.

    PubMed  Google Scholar 

  95. Schiffmann SN, Cheron G, Lohof A, d’Alcantara P, Meyer M, Parmentier M, et al. Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin. Proc Natl Acad Sci USA. 1999;96:5257–62.

    PubMed  CAS  Google Scholar 

  96. Bearzatto B, Servais L, Rousssel C, Gall D, Baba-Aissa F, Schurmans S, et al. Targeted calretinin expression in granule cells of calretinin-null mice restores normal cerebellar functions. FASEB J. 2006;20:380–2.

    PubMed  CAS  Google Scholar 

  97. Messer A, Plummer-Siegard J, Eisenberg B. Staggerer mutant mouse Purkinje cells do not contain detectable calmodulin mRNA. J Neurochem. 1990;55:293–302.

    PubMed  CAS  Google Scholar 

  98. Paterlini M, Revilla V, Grant AL, Wisden W. Expression of the neuronal calcium sensor protein family in the rat brain. Neuroscience. 2000;99:205–16.

    PubMed  CAS  Google Scholar 

  99. Burgoyne RD. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci. 2007;8:182–93.

    PubMed  CAS  Google Scholar 

  100. Savidge JR, Bristow DR. Routes of NMDA- and K+-stimulated calcium entry in rat cerebellar granule cells. Neruosci Lett. 1997;229:109–12.

    CAS  Google Scholar 

  101. Simpson PB, Challiss RA, Nahorski SR. Involvement of intracellular stores in the Ca2+ responses to N-methyl-D-aspartate and depolarization in cerebellar granule cells. J Neurochem. 1993;61:760–3.

    PubMed  CAS  Google Scholar 

  102. Regehr WG, Atluri PP. Calcium transients in cerebellar granule cell presynaptic terminals. Biophys J. 1995;68:2156–70.

    PubMed  CAS  Google Scholar 

  103. Dittmann JS, Regehr WG. Contributions of calcium-dependent and calcium-independent mechanisms to presynaptic inhibition at a cerebellar synapse. J Neurosci. 1996;16:1623–33.

    Google Scholar 

  104. Sabatini BL, Regehr WG. Control of neurotransmitter release by presynaptic waveform at the granule cell to Purkinje cell synapse. J Neurosci. 1997;17:3425–35.

    PubMed  CAS  Google Scholar 

  105. Sabatini BL, Regehr WG. Optical measurement of presynaptic calcium currents. Biophys J. 1998;74:1549–63.

    PubMed  CAS  Google Scholar 

  106. Beierlein M, Gee KR, Martin VV, Regehr WG. Presynaptic calcium measurements at physiological temperatures using a new class of dextran-conjugated indicators. J Neurophysiol. 2004;92:591–9.

    PubMed  CAS  Google Scholar 

  107. Ciardo A, Meldolesi J. Regulation of intracellular calcium in cerebellar granule neurons: effect of depolarization and of glutamatergic or cholinergic stimulation. J Neurochem. 1991;56:184–91.

    PubMed  CAS  Google Scholar 

  108. Irving AJ, Collingridge GL, Schofield JG. L-glutamate and acetylcholine mobilise Ca2+ from the same intracellular pool in cerebellar granule cells using transduction mechanisms with different Ca2+ sensitivities. Cell Calcium. 1992;13:293–301.

    PubMed  CAS  Google Scholar 

  109. De Erausquin G, Brooken G, Costa E, Wojcik WJ. Stimulation of high affinity gamma-aminobutyric acidB receptors potentiates the depolarization-induced increase of intraneuronal ionized calcium content in cerebellar granule neurons. Mol Pharmacol. 1992;42:407–14.

    PubMed  Google Scholar 

  110. Fohrman EB, de Erausquin G, Costa E, Wojcik WJ. Muscarinic m3 receptors and dynamics of intracellular Ca2+ cerebellar granule neurons. Eur J Pharmacol. 1993;245:263–71.

    PubMed  CAS  Google Scholar 

  111. Castilho RF, Hansson O, Ward MW, Budd SL, Nicholls DG. Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci. 1998;18:10277–86.

    PubMed  CAS  Google Scholar 

  112. Ward MW, Rego AC, Frenguelli BG, Nicholls DG. Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci. 2000;20:7208–19.

    PubMed  CAS  Google Scholar 

  113. Rego AC, Ward MW, Nicholls DG. Mitochondria control amapa/kainate receptor-induced cytoplasmic calcium deregulation in rat cerebellar granule cells. J Neurosci. 2001;21:1893–901.

    PubMed  CAS  Google Scholar 

  114. Jekabsons MB, Nicholls DG. In situ respiration and bioenergetic status of mitochondria in primary cerebellar granule neuronal cultures exposed continuously to glutamate. J Biol Chem. 2004;279:32989–3000.

    PubMed  CAS  Google Scholar 

  115. Garcia-Martinez EM, Sanz-Blasco S, Karachitos A, Bandez MJ, Fernandez-Gomez FJ, Perez-Alvarez S, et al. Mitochondria and calcium flux as targets of neuroprotection caused by minocycline in cerebellar granule cells. Biochem Pharmacol. 2010;79:239–50.

    PubMed  CAS  Google Scholar 

  116. Brenowitz SD, Regehr WG. Reliability and heterogeneity of calcium signaling at single presynaptic boutons of cerebellar granulr cels. J Neruosci. 2007;27:7888–98.

    CAS  Google Scholar 

  117. Zhang W, Linden DJ. Neuromodulation at single presynaptic boutons of cerebellar parallel fibers is determined by bouton size and basal action potential-evoked Ca transient amplitude. J Neurosci. 2009;29:15586–94.

    PubMed  CAS  Google Scholar 

  118. Zhang W, Linden DJ. Calcium influx measured at single presynaptic boutons of cerebellar granule cells ascending axons and parallel fibers. Cerebellum 2010. doi:10.1007/s12311-009-0151-3.

  119. Cupello A, Esposito A, Marchetti C, Pellistri F, Robello M. Calcium accumulation in neurites and cell bodies of rat cerebellar granule cells in culture: effects on GABAA receptor functions. Amino Acids. 2005;28:177–82.

    PubMed  CAS  Google Scholar 

  120. Moulder KL, Cormier RJ, Shute AA, Zorumski CF, Mennerick S. Homeostatic effects of depolarization on Ca2+ influx, synaptic signaling, and survival. J Neurosci. 2003;23:1825–31.

    PubMed  CAS  Google Scholar 

  121. Okazawa M, Abe H, Katsukawa M, Iijima K, Kiwada T, Nakanishi S. Role of calciuneurin signaling in membrane potential-regulated maturation of cerebellar granule cells. J Neurosci. 2009;29:2938–47.

    PubMed  CAS  Google Scholar 

  122. Suzuki K, Sato M, Morishima Y, Nakanishi S. Neuronal depolarization controls brain-derived neurotrophic factor-induced upregulation of NR2C NMDA receptor via calcineurin signaling. J Neurosci. 2005;25:9535–43.

    PubMed  CAS  Google Scholar 

  123. Popp RL, Reneau JC, Dertien JS. Cerebellar granule cells cultured from adolescent rats express functional NMDA receptors: an in vitro model for studying the developing cerebellum. J Neurochem. 2008;106:900–11.

    PubMed  CAS  Google Scholar 

  124. Hack NJ, Sluiter AA, Balázs R. AMPA receptors in cerebellar granule cells during development in culture. Dev Brain Res. 1995;87:55–61.

    CAS  Google Scholar 

  125. Vallano ML, Lambolez B, Audinat E, Rossier J. Neuronal activity differentially regulates NMDA receptor subunit expression in cerebellar granule cells. J Neurosci. 1996;16:631–9.

    PubMed  CAS  Google Scholar 

  126. Mellor JR, Merlo D, Jones A, Wisden W, Randall AD. Mouse cerebellar granule cell differentiation: electrical activity regulates the GABAA receptor α6 subunit gene. J Neurosci. 1998;18:2822–33.

    PubMed  CAS  Google Scholar 

  127. Li L, Guerini D, Carafoli E. Calcineurin controls the transcription of Na+/Ca2+ exchanger isoforms in developing cerebellar neurons. J Biol Chem. 2000;275:20903–10.

    PubMed  CAS  Google Scholar 

  128. Maex R, De Schutter E. Synchronization of Golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J Neurophysiol. 1998;80:2521–37.

    PubMed  CAS  Google Scholar 

  129. Linne ML, Jalonen TO. Simulations of the cultured granule neuron excitability. Neurocomputing. 2003;52–54:583–90.

    Google Scholar 

  130. D’Angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V, et al. Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow K+-dependent mechanism. J Neurosci. 2001;21:759–70.

    PubMed  Google Scholar 

  131. Roussel C, Erneux T, Schiffmann SN, Gall D. Modulation of neuronal excitability by intracellular calcium buffering: from spiking to bursting. Cell Calcium. 2006;39:455–66.

    PubMed  CAS  Google Scholar 

  132. Nieus T, Sola E, Mapelli J, Saftenku E, Rossi P, D’Angelo E. LTP regulates burst initiation and frequency at mossy fiber − granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. J Neurophysiol. 2006;95:686–99.

    PubMed  Google Scholar 

  133. Gabbiani F, Mitgaard J, Knöpfel T. Synaptic integration in a model of cerebellar granule cells. J Neurophysiol. 1994;72:999–1009.

    PubMed  CAS  Google Scholar 

  134. Diwakar S, Magistretti J, Goldfarb M, Naldi G, D’Angelo E. Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells. J Neurophysiol. 2009;101:519–32.

    PubMed  CAS  Google Scholar 

  135. McManus OB, Magleby KL. Accounting for the Ca2+-dependent kinetics of single large-conductance Ca2+-activated K+ channels in rat skeletal muscle. J Physiol. 1991;443:739–77.

    PubMed  CAS  Google Scholar 

  136. Mathie A, Clarke CE, Ranatunga KM, Veale EL. What are the roles of the many different types of potassium channel expressed in cerebellar granule cells? Cerebellum. 2003;2:11–25.

    PubMed  CAS  Google Scholar 

  137. D’Angelo E, De Filippi G, Rossi P, Taglietti V. Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. J Neurophysiol. 1998;80:493–503.

    PubMed  Google Scholar 

  138. Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW. Cloning and functional characterization of novel large conductance calcium-activated potassium channel β subunits, hkCNMB3 and hkCNMB4. J Biol Chem. 2000;275:6453–61.

    PubMed  CAS  Google Scholar 

  139. Fakler B, Adelman JP. Control of KCa channels by calcium nano/microdomains. Neuron. 2008;59:873–81.

    PubMed  CAS  Google Scholar 

  140. Saftenku EE. Computational study of non-homogeneous distribution of Ca2+ handling systems in cerebellar granule cells. J Theor Biol. 2009;257:228–44.

    PubMed  CAS  Google Scholar 

  141. Xu T, Naraghi M, Kang H, Neher E. Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. Biophys J. 1997;73:532–45.

    PubMed  CAS  Google Scholar 

  142. De Schutter E, Smolen P. Calcium dynamics in large neuronal models. In: Koch C, Segev I, editors. Methods in neuronal modeling. From ions to networks. 2nd ed. Cambridge: MIT; 1998. p. 211–50.

    Google Scholar 

  143. Fink CC, Slepchenko B, Moraru II, Watras J, Schaff JC, Loew LM. An image-based model of calcium waves in differentiated neuroblastoma cells. Biophys J. 2000;79:163–83.

    PubMed  CAS  Google Scholar 

  144. Snyder SM, Palmer BM, Moore RL. A mathematical model of cardiocyte Ca2+ dynamics with a novel representation of sarcoplasmic reticular Ca2+ control. Biophys J. 2000;79:94–115.

    PubMed  CAS  Google Scholar 

  145. Sneyd J, Tsaneva-Atanasova K, Bruce JI, Straub SV, Giovannucci DR, Yule DI. A model of calcium waves in pancreatic and parotid acinar cells. Biophys J. 2003;85:1392–405.

    PubMed  CAS  Google Scholar 

  146. Hernjak N, Slepchenko BM, Fernald K, Fink CC, Fortin D, Moraru II, et al. Modeling and analysis of calcium signaling events leading to long-term depression in cerebellar Purkinje cells. Biophys J. 2005;89:3790–806.

    PubMed  CAS  Google Scholar 

  147. Doi T, Kuroda S, Michikawa T, Kawato M. Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neruosci. 2005;25:950–61.

    CAS  Google Scholar 

  148. Patterson M, Sneyd J, Friel DD. Depolarization-induced calcium responses in sympathetic neurons: relative contributions from Ca2+ entry, extrusion, ER/mitochondrial Ca2+ uptake and release, and Ca2+ buffering. J Gen Physiol. 2007;129:29–56.

    PubMed  CAS  Google Scholar 

  149. Zador A, Koch C, Brown TH. Biophysical model of a Hebbian synapse. Proc Natl Acad Sci USA. 1990;87:6718–22.

    PubMed  CAS  Google Scholar 

  150. Saftenku EE. Estimation of the capacity of heterogeneously distributed endogenous calcium buffers in a neuron. Neurophysiology. 2009;41:111–5.

    CAS  Google Scholar 

  151. Schwaller B, Durussel I, Jermann D, Herrmann B, Cox JA. Comparison of the Ca2+-binding properties of human recombinant calretinin-22k and calretinin. J Biol Chem. 1997;272:29663–71.

    PubMed  CAS  Google Scholar 

  152. Weiss M, Elsner M, Kartberg F, Nilsson T. Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys J. 2004;87:3518–24.

    PubMed  CAS  Google Scholar 

  153. Hack NJ, Wride MC, Charters KM, Kater SB, Parks TN. Developmental changes in the subcellular localization of calretinin. J Neurosci. 2000;20:RC67.

    PubMed  CAS  Google Scholar 

  154. Hubbard MJ, McHugh NJ. Calbindin28kDa and calbindin30kDa (calretinin) are substantially localised in the particulate fraction of rat brain. FEBS Lett. 1995;374:333–7.

    PubMed  CAS  Google Scholar 

  155. Winsky L, Kuźnicki J. Distribution of calretinin, calbindin D28k, and parvalbumin in subcellular fractions of rat cerebellum: effects of calcium. J Neurochem. 1995;65:381–8.

    PubMed  CAS  Google Scholar 

  156. Keller DX, Franks KM, Bartol Jr TM, Sejnowski TJ. Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines. PLoS ONE. 2008;3:e2045.

    PubMed  Google Scholar 

  157. Schmidt H, Eilers J. Spine neck geometry determines spino-dendritic cross-talk in the presence of mobile endogenous calcium binding proteins. J Comput Neurosci. 2009;27:229–43.

    PubMed  Google Scholar 

  158. Schmidt H, Kunerth S, Wilms C, Strotmann R, Eilers J. Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins. J Physiol. 2007;581(Pt 2):619–29.

    PubMed  Google Scholar 

  159. Schaad NC, De Castro E, Nef S, Hegi S, Hinrichsen R, Martone ME, et al. Direct modulation of calmodulin targets by the neuronal calcium sensor NCS-1. Proc Nat Acad Sci USA. 1996;93:9253–8.

    PubMed  CAS  Google Scholar 

  160. Spilker C, Richter K, Smalla KH, Manahan-Vaughan D, Gundelfinger ED, Braunewell KH. The neuronal EF-hand calcium-binding protein visinin-like protein-3 is expressed in cerebellar Purkinje cells and shows a calcium-dependent membrane association. Neuroscience. 2000;96:121–9.

    PubMed  CAS  Google Scholar 

  161. Jheng FF, Wang L, Lee L, Chang LS. Functional contribution of Ca2+ and Mg2+ to the intermolecular interaction of visinin-like proteins. Protein J. 2006;25:250–6.

    PubMed  CAS  Google Scholar 

  162. Jeromin A, Muralidhar D, Parameswaran MN, Roder J, Fairwell T, Scarlata S, et al. N-terminal myristolation regulates calcium-induced conformational changes in neuronal calcium sensor-1. J Biol Chem. 2004;279:27158–67.

    PubMed  CAS  Google Scholar 

  163. van Kan PL, Gibson AR, Houk JC. Movement-related inputs to intermediate cerebellum of the monkey. J Neurophysiol. 1993;69:74–94.

    PubMed  Google Scholar 

  164. D’Errico A, Prestori F, D’Angelo E. Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input. J Physiol. 2009;587(Pt 24):5843–57.

    PubMed  Google Scholar 

  165. Cathala L, Misra C, Cull-Candy S. Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber − granule cell synapses. J Neurosci. 2000;20:5899–905.

    PubMed  CAS  Google Scholar 

  166. Colegrove SL, Albrecht MA, Friel DD. Quantitative analysis of mitochondrial Ca2+ uptake and release pathways in sympathetic neurons. Reconstruction of the recovery after depolarization-evoked [Ca2+] i elevations. J Gen Physiol. 2000;115:371–88.

    PubMed  CAS  Google Scholar 

  167. Young KW, Bampton ET, Pinòn L, Bano D, Nicotera P. Mitochondrial Ca2+ signalling in hippocampal neurons. Cell Calcium. 2008;43:296–306.

    PubMed  CAS  Google Scholar 

  168. Blum R, Petersen OH, Verkhratsky A. Ca2+ imaging of intracellular organelles: endoplasmic reticulum. In: Verkhratsky A, Petersen OH, editors. Calcium measurement methods: Neuromethods, vol. 43. New York: Humana; 2010. p. 147–67.

    Google Scholar 

  169. Albrecht MA, Colegrove SL, Hongpaisan J, Pivovarova NB, Andrews SB, Friel DD. Multiple modes of calcium-induced calcium release in sympathetic neurons I: attenuation of endoplasmic reticulum Ca2+ accumulation at low [Ca2+] i during weak stimulation. J Gen Physiol. 2001;118:83–110.

    PubMed  CAS  Google Scholar 

  170. Choi YM, Kim SH, Chung S, Uhm DY, Park MK. Regional interaction of endoplasmic reticulum Ca2+ signals between soma and dendrites through rapid luminal Ca2+ diffusion. J Neurosci. 2006;26:12127–36.

    PubMed  CAS  Google Scholar 

  171. Migliore M, Shepherd GM. Emerging rules for the distributions of active dendritic conductances. Nat Rev Neurosci. 2002;3:362–70.

    PubMed  CAS  Google Scholar 

  172. Veiko VP, Golubok AO, Zuong Z, Varkentina NV, Yakovlev EB. Combined nanoprobes for scanning microscopy: laser technology for processing and testing. Proc SPIE. 2008;6879:68791W.1–68791W.10.

    Google Scholar 

  173. Sabatini B, Svoboda K. Analysis of calcium channels in single spines using optical fluctuation analysis. Nature. 2000;408:589–93.

    PubMed  CAS  Google Scholar 

  174. Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TV, Snutch TP, et al. Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci. 1995;15:6403–18.

    PubMed  CAS  Google Scholar 

  175. Leitch B, Szostek A, Lin R, Shevsova O. Subcellular distribution of L-type calcium channel subtypes in rat hippocampal neurons. Neuroscience. 2009;164:641–57.

    PubMed  CAS  Google Scholar 

  176. Hackney CM, Mahendrasingam S, Penn A, Fettiplace R. The concentrations of calcium buffering proteins in mammalian cohlear hair cells. J Neurosci. 2005;25:7867–75.

    PubMed  CAS  Google Scholar 

  177. Schmidt H, Schwaller B, Eilers J. Calbindin D28k targets myo-inositol monophosphatase in spines and dendrites of cerebellar Purkinje neurons. Proc Natl Acad Sci USA. 2005;102:5850–5.

    PubMed  CAS  Google Scholar 

  178. Lörincz A, Rozsa B, Katona G, Vizi ES, Tamas G. Differential distribution of NCX1 contributes to spine-dendrite compartmentalization in CA1 pyramidal neurons. Proc Natl Acad Sci USA. 2007;104:1033–8.

    PubMed  Google Scholar 

  179. Maravall M, Mainen ZF, Sabatini BL, Svoboda K. Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys J. 2000;78:2655–67.

    PubMed  CAS  Google Scholar 

  180. Sabatini BL, Oertner TG, Svoboda K. The life cycle of Ca2+ ions in dendritic spines. Neuron. 2002;33:439–52.

    PubMed  CAS  Google Scholar 

  181. Fierro L, DiPolo R, Llano I. Intracellular calcium clearance in Purkinje cell somata from rat cerebellar slices. J Physiol. 1998;510(Pt 2):499–512.

    PubMed  CAS  Google Scholar 

  182. Landolfi B, Curci S, Debellis L, Pozzan T, Hofer AM. Ca2+ homeostasis in the agonist-sensitive internal store: functional interactions between mitochondria and the ER measured in situ in intact cells. J Cell Biol. 1998;142:1235–43.

    PubMed  CAS  Google Scholar 

  183. Czyz A, Kiedrowski L. Inhibition of plasmalemmal Na+/Ca2+ exchange by mitochondrial Na+/Ca2+ exchange inhibitor 7-chloro-5-(2-chlorophenyl)-1, 5-dihydro-4, 1-benzothiazepin-2(3 H)-one (CGP-37157) in cerebellar granule cells. Biochem Pharmacol. 2003;66:2409–11.

    PubMed  CAS  Google Scholar 

  184. Billups B, Forsythe ID. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci. 2002;22:5840–7.

    PubMed  CAS  Google Scholar 

  185. Vay L, Hernandez-SanMiguel E, Lobatón CD, Moreno A, Montero M, Alvarez J. Mitochondrial free [Ca2+] levels and the permeability transition. Cell Calcium. 2009;45:243–50.

    PubMed  CAS  Google Scholar 

  186. Contreras L, Drago I, Zampese E, Pozzan T. Mitochondria: the calcium connection. Biochim Biophys Acta. 2010;1797:607–18.

    PubMed  CAS  Google Scholar 

  187. Higgins ER, Goel P, Puglisi JL, Bers DM, Cannell M, Sneyd J. Modelling calcium microdomains using homogenisation. J Theor Biol. 2007;247:623–44.

    PubMed  CAS  Google Scholar 

  188. Albrecht MA, Colegrove SL, Friel DD. Differential regulation of ER Ca2+ uptake and release rates accounts for multiple modes of Ca2+-induced Ca2+ release. J Gen Physiol. 2002;119:211–33.

    PubMed  CAS  Google Scholar 

  189. Pozzan T, Rudolf R. Measurements of mitochondrial calcium in vivo. Biochym Biophys Acta. 2009;1787:1317–23.

    CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank sincerely David Friel for helpful comments and constant support and Thomas Nielsen for help with editing.

Conflict of Interest Statement

I declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena È. Saftenku.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saftenku, E.È. Models of Calcium Dynamics in Cerebellar Granule Cells. Cerebellum 11, 85–101 (2012). https://doi.org/10.1007/s12311-010-0216-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0216-3

Keywords

Navigation