Skip to main content

Recent Developments in the Understanding of Astrocyte Function in the Cerebellum In Vivo

Abstract

Several studies have contributed to our understanding of astrocytes, especially Bergmann glia, in the cerebellum; but, until recently, none has looked at their function in vivo. Multicell bolus loading of fluorescent calcium indicators in combination with the astrocytic marker SR101 has allowed imaging of up to hundreds of astrocytes at once in the intact cerebellum. In addition, the selective targeting of astrocytes with fluorescent calcium indicator proteins has enabled the study of their function in vivo without the confounding effects of other neuropil signals and with a resolution that surpasses multicell bolus loading and SR101 staining. The two astrocyte types of the cerebellar cortex, Bergmann glia, and velate protoplasmic astrocytes display a diverse signaling repertoire in vivo, which ranges from localized calcium elevations in subcellular processes to waves, triggered by the release of purines and mediated by purinergic receptors that span multiple processes and can involve tens of astrocytes. During locomotor behavior, even larger numbers of astrocytes display calcium increases that are driven by neuronal activity and correlate with global changes in blood flow. In this review, we give an overview of our current understanding of the function of Bergmann glia and velate protoplasmic astrocytes and the promise of the tools used to study their calcium dynamics and function in vivo.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

References

  1. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science (New York, NY) 248(4951):73–76

    CAS  Google Scholar 

  2. Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100(12):7319–7324

    CAS  Article  PubMed  Google Scholar 

  3. Wang X, Lou N, Xu Q, Tian GF, Peng WG, Han X et al (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9(6):816–823

    CAS  Article  PubMed  Google Scholar 

  4. Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science (New York, NY) 320(5883):1638–1643

    CAS  Google Scholar 

  5. Ding S, Fellin T, Zhu Y, Lee SY, Auberson YP, Meaney DF et al (2007) Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus. J Neurosci 27(40):10674–10684

    CAS  Article  PubMed  Google Scholar 

  6. Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science (New York, NY) 323(5918):1211–1215

    CAS  Google Scholar 

  7. Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T et al (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61(2):213–219

    CAS  Article  PubMed  Google Scholar 

  8. Prolo LM, Takahashi JS, Herzog ED (2005) Circadian rhythm generation and entrainment in astrocytes. J Neurosci 25(2):404–408

    CAS  Article  PubMed  Google Scholar 

  9. Suh J, Jackson FR (2007) Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 55(3):435–447

    CAS  Article  PubMed  Google Scholar 

  10. Fellin T, Halassa MM, Terunuma M, Succol F, Takano H, Frank M et al (2009) Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo. Proceedings of the National Academy of Sciences of the United States of America, Aug 17

  11. Chan-Palay V, Palay SL (1972) The stellate cells of the rat's cerebellar cortex. Z Anat Entwicklungsgesch 136(2):224–248

    CAS  Article  PubMed  Google Scholar 

  12. Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J Comp Neurol 141(3):283–312

    CAS  Article  PubMed  Google Scholar 

  13. Reichenbach A, Siegel A, Rickmann M, Wolff JR, Noone D, Robinson SR (1995) Distribution of Bergmann glial somata and processes: implications for function. J Hirnforsch 36(4):509–517

    CAS  PubMed  Google Scholar 

  14. Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27(24):6473–6477

    CAS  Article  PubMed  Google Scholar 

  15. Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2(2):139–143

    CAS  Article  PubMed  Google Scholar 

  16. Grosche J, Kettenmann H, Reichenbach A (2002) Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. J Neurosci Res 68(2):138–149

    CAS  Article  PubMed  Google Scholar 

  17. Castejon OJ, Dailey ME, Apkarian RP, Castejon HV (2002) Correlative microscopy of cerebellar Bergmann glial cells. J Submicrosc Cytol Pathol 34(2):131–142

    CAS  PubMed  Google Scholar 

  18. Svoboda K, Tank DW, Denk W (1996) Direct measurement of coupling between dendritic spines and shafts. Science (New York, NY) 272(5262):716–719

    CAS  Google Scholar 

  19. Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM et al (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci 27(25):6607–6619

    CAS  Article  PubMed  Google Scholar 

  20. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D et al (1994) Localization of neuronal and glial glutamate transporters. Neuron 13(3):713–725

    CAS  Article  PubMed  Google Scholar 

  21. Bergles DE, Dzubay JA, Jahr CE (1997) Glutamate transporter currents in bergmann glial cells follow the time course of extrasynaptic glutamate. Proc Natl Acad Sci U S A 94(26):14821–14825

    CAS  Article  PubMed  Google Scholar 

  22. Matsui K, Jahr CE, Rubio ME (2005) High-concentration rapid transients of glutamate mediate neural-glial communication via ectopic release. J Neurosci 25(33):7538–7547

    CAS  Article  PubMed  Google Scholar 

  23. Clark BA, Barbour B (1997) Currents evoked in Bergmann glial cells by parallel fibre stimulation in rat cerebellar slices. J Physiol 502(Pt 2):335–350

    CAS  Article  PubMed  Google Scholar 

  24. Matsui K, Jahr CE (2004) Differential control of synaptic and ectopic vesicular release of glutamate. J Neurosci 24(41):8932–8939

    CAS  Article  PubMed  Google Scholar 

  25. Bellamy TC, Ogden D (2005) Short-term plasticity of Bergmann glial cell extrasynaptic currents during parallel fiber stimulation in rat cerebellum. Glia. 52(4):325–335

    Article  PubMed  Google Scholar 

  26. Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S et al (2001) Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science (New York, NY) 292(5518):926–929

    CAS  Google Scholar 

  27. Piet R, Jahr CE (2007) Glutamatergic and purinergic receptor-mediated calcium transients in Bergmann glial cells. J Neurosci 27(15):4027–4035

    CAS  Article  PubMed  Google Scholar 

  28. Ishiuchi S, Tsuzuki K, Yamada N, Okado H, Miwa A, Kuromi H et al (2001) Extension of glial processes by activation of Ca2+-permeable AMPA receptor channels. Neuroreport 12(4):745–748

    CAS  Article  PubMed  Google Scholar 

  29. Riquelme R, Miralles CP, De Blas AL (2002) Bergmann glia GABA(A) receptors concentrate on the glial processes that wrap inhibitory synapses. J Neurosci 22(24):10720–10730

    CAS  PubMed  Google Scholar 

  30. Hoogland TM, Kuhn B, Gobel W, Huang W, Nakai J, Helmchen F et al (2009) Radially expanding transglial calcium waves in the intact cerebellum. Proc Natl Acad Sci U S A 106(9):3496–3501

    CAS  Article  PubMed  Google Scholar 

  31. Nimmerjahn A, Mukamel EA, Schnitzer MJ (2009) Motor behavior activates Bergmann glial networks. Neuron 62(3):400–412

    CAS  Article  PubMed  Google Scholar 

  32. Kirischuk S, Scherer J, Kettenmann H, Verkhratsky A (1995) Activation of P2-purinoreceptors triggered Ca2+ release from InsP3-sensitive internal stores in mammalian oligodendrocytes. J Physiol 483(Pt 1):41–57

    CAS  PubMed  Google Scholar 

  33. Beierlein M, Regehr WG (2006) Brief bursts of parallel fiber activity trigger calcium signals in bergmann glia. J Neurosci 26(26):6958–6967

    CAS  Article  PubMed  Google Scholar 

  34. Jung S, Pfeiffer F, Deitmer JW (2000) Histamine-induced calcium entry in rat cerebellar astrocytes: evidence for capacitative and non-capacitative mechanisms. J Physiol 527(Pt 3):549–561

    CAS  Article  PubMed  Google Scholar 

  35. Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19(2):520–528

    CAS  PubMed  Google Scholar 

  36. Bowser DN, Khakh BS (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 24(39):8606–8620

    CAS  Article  PubMed  Google Scholar 

  37. Hoogland TM, Civillico EF, Kuhn B (2007) Molecular layer interneurons relay cerebellar cortical activity to Bergmann glial cells. J Neurosci 27(42):11167–11169

    CAS  Article  PubMed  Google Scholar 

  38. Newman EA (1986) Regional specialization of the membrane of retinal glial cells and its importance to K+ spatial buffering. Ann NY Acad Sci 481:273–286

    CAS  Article  PubMed  Google Scholar 

  39. Kurth-Nelson ZL, Mishra A, Newman EA (2009) Spontaneous glial calcium waves in the retina develop over early adulthood. J Neurosci 29(36):11339–11346

    CAS  Article  PubMed  Google Scholar 

  40. Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X et al (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9(2):260–267

    CAS  Article  PubMed  Google Scholar 

  41. Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW (2007) Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56(1):43–57

    CAS  Article  PubMed  Google Scholar 

  42. Kuhn B, Hoogland TM, Nakai J, Flint J, Wang SS (2006) In vivo visualization of synaptically evoked glial calcium signals using G-cAMP-2. Program No 43311 2006 Neuroscience Meeting Planner Atlanta, GA: Society for Neuroscience, 2006 Online

  43. Chan-Palay V, Palay SL (1972) The form of velate astrocytes in the cerebellar cortex of monkey and rat: high voltage electron microscopy of rapid Golgi preparations. Z Anat Entwicklungsgesch 138(1):1–19

    CAS  Article  PubMed  Google Scholar 

  44. Garaschuk O, Milos RI, Konnerth A (2006) Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat Protoc 1(1):380–386

    CAS  Article  PubMed  Google Scholar 

  45. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940

    CAS  Article  PubMed  Google Scholar 

  46. Sullivan MR, Nimmerjahn A, Sarkisov DV, Helmchen F, Wang SS (2005) In vivo calcium imaging of circuit activity in cerebellar cortex. J Neurophysiol 94(2):1636–1644

    CAS  Article  PubMed  Google Scholar 

  47. Hirase H, Qian L, Bartho P, Buzsaki G (2004) Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol 2(4):E96

    Article  PubMed  Google Scholar 

  48. Ozden I, Sullivan MR, Lee HM, Wang SS (2009) Reliable coding emerges from coactivation of climbing fibers in microbands of cerebellar Purkinje neurons. J Neurosci 29(34):10463–10473

    CAS  Article  PubMed  Google Scholar 

  49. Nimmerjahn A, Kirchhoff F, Kerr JN, Helmchen F (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1(1):31–37

    CAS  Article  PubMed  Google Scholar 

  50. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887

    CAS  Article  PubMed  Google Scholar 

  51. Regehr WG, Atluri PP (1995) Calcium transients in cerebellar granule cell presynaptic terminals. Biophys J 68(5):2156–2170

    CAS  Article  PubMed  Google Scholar 

  52. Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V et al (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5(9):805–811

    CAS  Article  PubMed  Google Scholar 

  53. Hasan MT, Friedrich RW, Euler T, Larkum ME, Giese G, Both M et al (2004) Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biol 2(6):e163

    Article  PubMed  Google Scholar 

  54. Heim N, Garaschuk O, Friedrich MW, Mank M, Milos RI, Kovalchuk Y et al (2007) Improved calcium imaging in transgenic mice expressing a troponin C-based biosensor. Nat Methods 4(2):127–129

    CAS  Article  PubMed  Google Scholar 

  55. Mao T, O'Connor DH, Scheuss V, Nakai J, Svoboda K (2008) Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLoS ONE 3(3):e1796

    Article  PubMed  Google Scholar 

  56. Judkewitz B, Rizzi M, Kitamura K, Hausser M (2009) Targeted single-cell electroporation of mammalian neurons in vivo. Nat Protoc 4(6):862–869

    CAS  Article  PubMed  Google Scholar 

  57. Wallace DJ, Meyer zum Alten Borgloh S, Astori S, Yang Y, Bausen M, Kugler S et al (2008) Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nat Methods 5(9):797–804

    CAS  Article  PubMed  Google Scholar 

  58. Burger C, Nguyen FN, Deng J, Mandel RJ (2005) Systemic mannitol-induced hyperosmolality amplifies rAAV2-mediated striatal transduction to a greater extent than local co-infusion. Mol Ther 11(2):327–331

    CAS  Article  PubMed  Google Scholar 

  59. Wang CY, Wang S (2006) Astrocytic expression of transgene in the rat brain mediated by baculovirus vectors containing an astrocyte-specific promoter. Gene Ther 13(20):1447–1456

    CAS  Article  PubMed  Google Scholar 

  60. Shevtsova Z, Malik JM, Michel U, Bahr M, Kugler S (2005) Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp Physiol 90(1):53–59

    CAS  Article  PubMed  Google Scholar 

  61. Lowery RL, Zhang Y, Kelly EA, Lamantia CE, Harvey BK, Majewska AK (2009) Rapid, long-term labeling of cells in the developing and adult rodent visual cortex using double-stranded adeno-associated viral vectors. Developmental Neurobiology, Jun 23

  62. Colin A, Faideau M, Dufour N, Auregan G, Hassig R, Andrieu T et al (2009) Engineered lentiviral vector targeting astrocytes in vivo. Glia 57(6):667–679

    Article  PubMed  Google Scholar 

  63. Croci C, Fasano S, Superchi D, Perani L, Martellosio A, Brambilla R et al (2006) Cerebellar neurons and glial cells are transducible by lentiviral vectors without decrease of cerebellar functions. Dev Neurosci 28(3):216–221

    CAS  Article  PubMed  Google Scholar 

  64. Le Gal La Salle G, Robert JJ, Berrard S, Ridoux V, Stratford-Perricaudet LD, Perricaudet M et al (1993) An adenovirus vector for gene transfer into neurons and glia in the brain. Science (New York, NY) 259(5097):988–990

    Google Scholar 

  65. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95(5):2509–2514

    CAS  Article  PubMed  Google Scholar 

  66. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19(2):137–141

    CAS  Article  PubMed  Google Scholar 

  67. Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R et al (2006) Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci U S A 103(12):4753–4758

    CAS  Article  PubMed  Google Scholar 

  68. Sato Y, Shiraishi Y, Furuichi T (2004) Cell specificity and efficiency of the Semliki forest virus vector- and adenovirus vector-mediated gene expression in mouse cerebellum. J Neurosci Methods 137(1):111–121

    CAS  Article  PubMed  Google Scholar 

  69. Boulos S, Meloni BP, Arthur PG, Bojarski C, Knuckey NW (2006) Assessment of CMV, RSV and SYN1 promoters and the woodchuck post-transcriptional regulatory element in adenovirus vectors for transgene expression in cortical neuronal cultures. Brain Res 1102(1):27–38

    CAS  Article  PubMed  Google Scholar 

  70. Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D et al (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13(5):521–530

    CAS  Article  PubMed  Google Scholar 

  71. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY et al (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science (New York, NY) 310(5745):113–116

    CAS  Google Scholar 

  72. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. I. Ozden, E.F. Civillico, and S.S.-H. Wang for their valuable feedback on this manuscript. Parts of the work described in this review was supported by grants from NIH (RO1 NS 045193-05A2) and the New Jersey Governor’s Council for Autism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tycho M. Hoogland.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoogland, T.M., Kuhn, B. Recent Developments in the Understanding of Astrocyte Function in the Cerebellum In Vivo. Cerebellum 9, 264–271 (2010). https://doi.org/10.1007/s12311-009-0139-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-009-0139-z

Keywords

  • Bergmann glia
  • Velate protoplasmic astrocyte
  • G-CaMP2
  • FCIP
  • In vivo
  • Awake imaging