Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science (New York, NY) 248(4951):73–76
CAS
Google Scholar
Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100(12):7319–7324
CAS
Article
PubMed
Google Scholar
Wang X, Lou N, Xu Q, Tian GF, Peng WG, Han X et al (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9(6):816–823
CAS
Article
PubMed
Google Scholar
Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science (New York, NY) 320(5883):1638–1643
CAS
Google Scholar
Ding S, Fellin T, Zhu Y, Lee SY, Auberson YP, Meaney DF et al (2007) Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus. J Neurosci 27(40):10674–10684
CAS
Article
PubMed
Google Scholar
Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science (New York, NY) 323(5918):1211–1215
CAS
Google Scholar
Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T et al (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61(2):213–219
CAS
Article
PubMed
Google Scholar
Prolo LM, Takahashi JS, Herzog ED (2005) Circadian rhythm generation and entrainment in astrocytes. J Neurosci 25(2):404–408
CAS
Article
PubMed
Google Scholar
Suh J, Jackson FR (2007) Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 55(3):435–447
CAS
Article
PubMed
Google Scholar
Fellin T, Halassa MM, Terunuma M, Succol F, Takano H, Frank M et al (2009) Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo. Proceedings of the National Academy of Sciences of the United States of America, Aug 17
Chan-Palay V, Palay SL (1972) The stellate cells of the rat's cerebellar cortex. Z Anat Entwicklungsgesch 136(2):224–248
CAS
Article
PubMed
Google Scholar
Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J Comp Neurol 141(3):283–312
CAS
Article
PubMed
Google Scholar
Reichenbach A, Siegel A, Rickmann M, Wolff JR, Noone D, Robinson SR (1995) Distribution of Bergmann glial somata and processes: implications for function. J Hirnforsch 36(4):509–517
CAS
PubMed
Google Scholar
Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27(24):6473–6477
CAS
Article
PubMed
Google Scholar
Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2(2):139–143
CAS
Article
PubMed
Google Scholar
Grosche J, Kettenmann H, Reichenbach A (2002) Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. J Neurosci Res 68(2):138–149
CAS
Article
PubMed
Google Scholar
Castejon OJ, Dailey ME, Apkarian RP, Castejon HV (2002) Correlative microscopy of cerebellar Bergmann glial cells. J Submicrosc Cytol Pathol 34(2):131–142
CAS
PubMed
Google Scholar
Svoboda K, Tank DW, Denk W (1996) Direct measurement of coupling between dendritic spines and shafts. Science (New York, NY) 272(5262):716–719
CAS
Google Scholar
Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM et al (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci 27(25):6607–6619
CAS
Article
PubMed
Google Scholar
Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D et al (1994) Localization of neuronal and glial glutamate transporters. Neuron 13(3):713–725
CAS
Article
PubMed
Google Scholar
Bergles DE, Dzubay JA, Jahr CE (1997) Glutamate transporter currents in bergmann glial cells follow the time course of extrasynaptic glutamate. Proc Natl Acad Sci U S A 94(26):14821–14825
CAS
Article
PubMed
Google Scholar
Matsui K, Jahr CE, Rubio ME (2005) High-concentration rapid transients of glutamate mediate neural-glial communication via ectopic release. J Neurosci 25(33):7538–7547
CAS
Article
PubMed
Google Scholar
Clark BA, Barbour B (1997) Currents evoked in Bergmann glial cells by parallel fibre stimulation in rat cerebellar slices. J Physiol 502(Pt 2):335–350
CAS
Article
PubMed
Google Scholar
Matsui K, Jahr CE (2004) Differential control of synaptic and ectopic vesicular release of glutamate. J Neurosci 24(41):8932–8939
CAS
Article
PubMed
Google Scholar
Bellamy TC, Ogden D (2005) Short-term plasticity of Bergmann glial cell extrasynaptic currents during parallel fiber stimulation in rat cerebellum. Glia. 52(4):325–335
Article
PubMed
Google Scholar
Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S et al (2001) Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science (New York, NY) 292(5518):926–929
CAS
Google Scholar
Piet R, Jahr CE (2007) Glutamatergic and purinergic receptor-mediated calcium transients in Bergmann glial cells. J Neurosci 27(15):4027–4035
CAS
Article
PubMed
Google Scholar
Ishiuchi S, Tsuzuki K, Yamada N, Okado H, Miwa A, Kuromi H et al (2001) Extension of glial processes by activation of Ca2+-permeable AMPA receptor channels. Neuroreport 12(4):745–748
CAS
Article
PubMed
Google Scholar
Riquelme R, Miralles CP, De Blas AL (2002) Bergmann glia GABA(A) receptors concentrate on the glial processes that wrap inhibitory synapses. J Neurosci 22(24):10720–10730
CAS
PubMed
Google Scholar
Hoogland TM, Kuhn B, Gobel W, Huang W, Nakai J, Helmchen F et al (2009) Radially expanding transglial calcium waves in the intact cerebellum. Proc Natl Acad Sci U S A 106(9):3496–3501
CAS
Article
PubMed
Google Scholar
Nimmerjahn A, Mukamel EA, Schnitzer MJ (2009) Motor behavior activates Bergmann glial networks. Neuron 62(3):400–412
CAS
Article
PubMed
Google Scholar
Kirischuk S, Scherer J, Kettenmann H, Verkhratsky A (1995) Activation of P2-purinoreceptors triggered Ca2+ release from InsP3-sensitive internal stores in mammalian oligodendrocytes. J Physiol 483(Pt 1):41–57
CAS
PubMed
Google Scholar
Beierlein M, Regehr WG (2006) Brief bursts of parallel fiber activity trigger calcium signals in bergmann glia. J Neurosci 26(26):6958–6967
CAS
Article
PubMed
Google Scholar
Jung S, Pfeiffer F, Deitmer JW (2000) Histamine-induced calcium entry in rat cerebellar astrocytes: evidence for capacitative and non-capacitative mechanisms. J Physiol 527(Pt 3):549–561
CAS
Article
PubMed
Google Scholar
Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19(2):520–528
CAS
PubMed
Google Scholar
Bowser DN, Khakh BS (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 24(39):8606–8620
CAS
Article
PubMed
Google Scholar
Hoogland TM, Civillico EF, Kuhn B (2007) Molecular layer interneurons relay cerebellar cortical activity to Bergmann glial cells. J Neurosci 27(42):11167–11169
CAS
Article
PubMed
Google Scholar
Newman EA (1986) Regional specialization of the membrane of retinal glial cells and its importance to K+ spatial buffering. Ann NY Acad Sci 481:273–286
CAS
Article
PubMed
Google Scholar
Kurth-Nelson ZL, Mishra A, Newman EA (2009) Spontaneous glial calcium waves in the retina develop over early adulthood. J Neurosci 29(36):11339–11346
CAS
Article
PubMed
Google Scholar
Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X et al (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9(2):260–267
CAS
Article
PubMed
Google Scholar
Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW (2007) Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56(1):43–57
CAS
Article
PubMed
Google Scholar
Kuhn B, Hoogland TM, Nakai J, Flint J, Wang SS (2006) In vivo visualization of synaptically evoked glial calcium signals using G-cAMP-2. Program No 43311 2006 Neuroscience Meeting Planner Atlanta, GA: Society for Neuroscience, 2006 Online
Chan-Palay V, Palay SL (1972) The form of velate astrocytes in the cerebellar cortex of monkey and rat: high voltage electron microscopy of rapid Golgi preparations. Z Anat Entwicklungsgesch 138(1):1–19
CAS
Article
PubMed
Google Scholar
Garaschuk O, Milos RI, Konnerth A (2006) Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat Protoc 1(1):380–386
CAS
Article
PubMed
Google Scholar
Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940
CAS
Article
PubMed
Google Scholar
Sullivan MR, Nimmerjahn A, Sarkisov DV, Helmchen F, Wang SS (2005) In vivo calcium imaging of circuit activity in cerebellar cortex. J Neurophysiol 94(2):1636–1644
CAS
Article
PubMed
Google Scholar
Hirase H, Qian L, Bartho P, Buzsaki G (2004) Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol 2(4):E96
Article
PubMed
Google Scholar
Ozden I, Sullivan MR, Lee HM, Wang SS (2009) Reliable coding emerges from coactivation of climbing fibers in microbands of cerebellar Purkinje neurons. J Neurosci 29(34):10463–10473
CAS
Article
PubMed
Google Scholar
Nimmerjahn A, Kirchhoff F, Kerr JN, Helmchen F (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1(1):31–37
CAS
Article
PubMed
Google Scholar
Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887
CAS
Article
PubMed
Google Scholar
Regehr WG, Atluri PP (1995) Calcium transients in cerebellar granule cell presynaptic terminals. Biophys J 68(5):2156–2170
CAS
Article
PubMed
Google Scholar
Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V et al (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5(9):805–811
CAS
Article
PubMed
Google Scholar
Hasan MT, Friedrich RW, Euler T, Larkum ME, Giese G, Both M et al (2004) Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biol 2(6):e163
Article
PubMed
Google Scholar
Heim N, Garaschuk O, Friedrich MW, Mank M, Milos RI, Kovalchuk Y et al (2007) Improved calcium imaging in transgenic mice expressing a troponin C-based biosensor. Nat Methods 4(2):127–129
CAS
Article
PubMed
Google Scholar
Mao T, O'Connor DH, Scheuss V, Nakai J, Svoboda K (2008) Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLoS ONE 3(3):e1796
Article
PubMed
Google Scholar
Judkewitz B, Rizzi M, Kitamura K, Hausser M (2009) Targeted single-cell electroporation of mammalian neurons in vivo. Nat Protoc 4(6):862–869
CAS
Article
PubMed
Google Scholar
Wallace DJ, Meyer zum Alten Borgloh S, Astori S, Yang Y, Bausen M, Kugler S et al (2008) Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nat Methods 5(9):797–804
CAS
Article
PubMed
Google Scholar
Burger C, Nguyen FN, Deng J, Mandel RJ (2005) Systemic mannitol-induced hyperosmolality amplifies rAAV2-mediated striatal transduction to a greater extent than local co-infusion. Mol Ther 11(2):327–331
CAS
Article
PubMed
Google Scholar
Wang CY, Wang S (2006) Astrocytic expression of transgene in the rat brain mediated by baculovirus vectors containing an astrocyte-specific promoter. Gene Ther 13(20):1447–1456
CAS
Article
PubMed
Google Scholar
Shevtsova Z, Malik JM, Michel U, Bahr M, Kugler S (2005) Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp Physiol 90(1):53–59
CAS
Article
PubMed
Google Scholar
Lowery RL, Zhang Y, Kelly EA, Lamantia CE, Harvey BK, Majewska AK (2009) Rapid, long-term labeling of cells in the developing and adult rodent visual cortex using double-stranded adeno-associated viral vectors. Developmental Neurobiology, Jun 23
Colin A, Faideau M, Dufour N, Auregan G, Hassig R, Andrieu T et al (2009) Engineered lentiviral vector targeting astrocytes in vivo. Glia 57(6):667–679
Article
PubMed
Google Scholar
Croci C, Fasano S, Superchi D, Perani L, Martellosio A, Brambilla R et al (2006) Cerebellar neurons and glial cells are transducible by lentiviral vectors without decrease of cerebellar functions. Dev Neurosci 28(3):216–221
CAS
Article
PubMed
Google Scholar
Le Gal La Salle G, Robert JJ, Berrard S, Ridoux V, Stratford-Perricaudet LD, Perricaudet M et al (1993) An adenovirus vector for gene transfer into neurons and glia in the brain. Science (New York, NY) 259(5097):988–990
Google Scholar
He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95(5):2509–2514
CAS
Article
PubMed
Google Scholar
Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19(2):137–141
CAS
Article
PubMed
Google Scholar
Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R et al (2006) Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci U S A 103(12):4753–4758
CAS
Article
PubMed
Google Scholar
Sato Y, Shiraishi Y, Furuichi T (2004) Cell specificity and efficiency of the Semliki forest virus vector- and adenovirus vector-mediated gene expression in mouse cerebellum. J Neurosci Methods 137(1):111–121
CAS
Article
PubMed
Google Scholar
Boulos S, Meloni BP, Arthur PG, Bojarski C, Knuckey NW (2006) Assessment of CMV, RSV and SYN1 promoters and the woodchuck post-transcriptional regulatory element in adenovirus vectors for transgene expression in cortical neuronal cultures. Brain Res 1102(1):27–38
CAS
Article
PubMed
Google Scholar
Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D et al (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13(5):521–530
CAS
Article
PubMed
Google Scholar
Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY et al (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science (New York, NY) 310(5745):113–116
CAS
Google Scholar
Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268
CAS
Article
PubMed
Google Scholar