Sensory Acquisition in the Cerebellum: An fMRI Study of Cerebrocerebellar Interaction During Visual Duration Discrimination

Abstract

It has been suggested that the cerebellum participates in diverse neuropsychological functions by adjusting the sensory information acquired for the connected brain regions to support its processing capabilities. Nevertheless, the knowledge of how the cerebellum is modulated by the sensory information is far from clear. Function magnetic resonance imaging was exploited to investigate how the cerebellum activity and cerebrocerebellum interaction can be affected by the interaction between visual size and duration information during visual duration discrimination. The present findings support the sensory acquisition hypothesis that the cerebellum, together with extensive cortical networks, yields higher activation with incongruent sensory information to cope with increasing cortical computational demand. Furthermore, comprehensive intracerebellum connections are engaged in tasks with congruent sensory information for saving cortical computation with integrated sensory information.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

References

  1. 1.

    Manni E, Petrosini L (2004) A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci 5:241–249

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Thickbroom GW, Byrnes ML, Mastaglia FL (2003) Dual representation of the hand in the cerebellum: activation with voluntary and passive finger movement. Neuroimage 18:670–674

    PubMed  Article  Google Scholar 

  3. 3.

    Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M (2001) Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp 13:55–73

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Bushara KO, Wheat JM, Khan A, Mock BJ, Turski PA, Sorenson J et al (2001) Multiple tactile maps in the human cerebellum. Neuroreport 12:2483–2486

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Jueptner M, Ottinger S, Fellows SJ, Adamschewski J, Flerich L, Muller SP et al (1997) The relevance of sensory input for the cerebellar control of movements. Neuroimage 5:41–48

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Ciccarelli O, Toosy AT, Marsden JF, Wheeler-Kingshott CM, Sahyoun C, Matthews PM et al (2005) Identifying brain regions for integrative sensorimotor processing with ankle movements. Exp Brain Res 166:31–42

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Restuccia D, Valeriani M, Barba C, Le Pera D, Capecci M, Filippini V et al (2001) Functional changes of the primary somatosensory cortex in patients with unilateral cerebellar lesions. Brain 124:757–768

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Helmchen C, Mohr C, Erdmann C, Petersen D, Nitschke MF (2003) Differential cerebellar activation related to perceived pain intensity during noxious thermal stimulation in humans: a functional magnetic resonance imaging study. Neurosci Lett 335:202–206

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Saab CY, Willis WD (2003) The cerebellum: organization, functions and its role in nociception. Brain Res Brain Res Rev 42:85–95

    PubMed  Article  Google Scholar 

  10. 10.

    Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303:1157–1162

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Allen G, Buxton RB, Wong EC, Courchesne E (1997) Attentional activation of the cerebellum independent of motor involvement. Science 275:1940–1943

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Chen SH, Desmond JE (2005) Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia 43:1227–1237

    PubMed  Article  Google Scholar 

  13. 13.

    Chen SH, Desmond JE (2005) Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage 24:332–338

    PubMed  Article  Google Scholar 

  14. 14.

    Kirschen MP, Chen SH, Schraedley-Desmond P, Desmond JE (2005) Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. Neuroimage 24:462–472

    PubMed  Article  Google Scholar 

  15. 15.

    Diamond A (2000) Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev 71:44–56

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    MacLeod CE, Zilles K, Schleicher A, Rilling JK, Gibson KR (2003) Expansion of the neocerebellum in Hominoidea. J Hum Evol 44:401–429

    PubMed  Article  Google Scholar 

  17. 17.

    Weaver AH (2005) Reciprocal evolution of the cerebellum and neocortex in fossil humans. Proc Natl Acad Sci USA 102:3576–3580

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM (2005) Magnetic resonance imaging of cerebellar–prefrontal and cerebellar–parietal functional connectivity. Neuroimage 28:39–48

    PubMed  Article  Google Scholar 

  19. 19.

    Dum RP, Strick PL (2003) An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol 89:634–639

    PubMed  Article  Google Scholar 

  20. 20.

    Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:458–461

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Clower DM, West RA, Lynch JC, Strick PL (2001) The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci 21:6283–6291

    PubMed  CAS  Google Scholar 

  22. 22.

    Ghez C, Thach WT (2000) The cerebellum. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science. McGraw-Hill, USA, pp 832–852

    Google Scholar 

  23. 23.

    Ito M (1993) Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci 16:448–450, discussion 53–54

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9:304–313

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Schmahmann JD (1998) Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci 2:362–371

    Article  Google Scholar 

  26. 26.

    Bower JM (1997) Control of sensory data acquisition. In: Schmahmann JD (ed) The cerebellum and cognition. Academic, New York, pp 490–508

    Google Scholar 

  27. 27.

    Bower JM (1997) Is the cerebellum sensory for motor’s sake, or motor for sensory’s sake: the view from the whiskers of a rat? Prog Brain Res 114:463–496

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Gao JH, Parsons LM, Bower JM, Xiong J, Li J, Fox PT (1996) Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 272:545–547

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Pastor MA, Day BL, Macaluso E, Friston KJ, Frackowiak RS (2004) The functional neuroanatomy of temporal discrimination. J Neurosci 24:2585–2591

    PubMed  Article  Google Scholar 

  30. 30.

    Xiang H, Lin C, Ma X, Zhang Z, Bower JM, Weng X et al (2003) Involvement of the cerebellum in semantic discrimination: an fMRI study. Hum Brain Mapp 18:208–214

    PubMed  Article  Google Scholar 

  31. 31.

    Lee TM, Liu HL, Hung KN, Pu J, Ng YB, Mak AK et al (2005) The cerebellum’s involvement in the judgment of spatial orientation: a functional magnetic resonance imaging study. Neuropsychologia 43:1870–1877

    PubMed  Article  Google Scholar 

  32. 32.

    Ferrandez AM, Hugueville L, Lehericy S, Poline JB, Marsault C, Pouthas V (2003) Basal ganglia and supplementary motor area subtend duration perception: an fMRI study. Neuroimage 19:1532–1544

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nat Neurosci 4:317–323

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Reiterer SM, Erb M, Droll CD, Anders S, Ethofer T, Grodd W et al (2005) Impact of task difficulty on lateralization of pitch and duration discrimination. Neuroreport 16:239–242

    PubMed  Article  Google Scholar 

  35. 35.

    Xuan B, Zhang D, He S, Chen X (2007) Larger stimuli are judged to last longer. J Vis 7:1–5

    PubMed  Article  Google Scholar 

  36. 36.

    Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ (1997) Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6:218–229

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Coull JT, Vidal F, Nazarian B, Macar F (2004) Functional anatomy of the attentional modulation of time estimation. Science 303:1506–1508

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Smith A, Taylor E, Lidzba K, Rubia K (2003) A right hemispheric frontocerebellar network for time discrimination of several hundreds of milliseconds. Neuroimage 20:344–350

    PubMed  Article  Google Scholar 

  39. 39.

    Schaefer M, Heinze HJ, Rotte M (2005) Viewing touch improves tactile sensory threshold. Neuroreport 16:367–370

    PubMed  Article  Google Scholar 

  40. 40.

    Janzen G, Jansen C, van Turennout M (2008) Memory consolidation of landmarks in good navigators. Hippocampus 18:40–47

    PubMed  Article  Google Scholar 

  41. 41.

    Vogt BA, Finch DM, Olson CR (1992) Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex 2:435–443

    PubMed  CAS  Google Scholar 

  42. 42.

    Belin P, McAdams S, Thivard L, Smith B, Savel S, Zilbovicius M et al (2002) The neuroanatomical substrate of sound duration discrimination. Neuropsychologia 40:1956–1964

    PubMed  Article  Google Scholar 

  43. 43.

    Jantzen KJ, Oullier O, Marshall M, Steinberg FL, Kelso JA (2007) A parametric fMRI investigation of context effects in sensorimotor timing and coordination. Neuropsychologia 45:673–684

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Stevens MC, Kiehl KA, Pearlson G, Calhoun VD (2007) Functional neural circuits for mental timekeeping. Hum Brain Mapp 28:394–408

    PubMed  Article  Google Scholar 

  45. 45.

    Jahanshahi M, Jones CR, Dirnberger G, Frith CD (2006) The substantia nigra pars compacta and temporal processing. J Neurosci 26:12266–12273

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Jueptner M, Rijntjes M, Weiller C, Faiss JH, Timmann D, Mueller SP et al (1995) Localization of a cerebellar timing process using PET. Neurology 45:1540–1545

    PubMed  CAS  Google Scholar 

  47. 47.

    Livesey AC, Wall MB, Smith AT (2007) Time perception: manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia 45:321–331

    PubMed  Article  Google Scholar 

  48. 48.

    Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280:747–749

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Magno E, Foxe JJ, Molholm S, Robertson IH, Garavan H (2006) The anterior cingulate and error avoidance. J Neurosci 26:4769–4773

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Chadderton P, Margrie TW, Hausser M (2004) Integration of quanta in cerebellar granule cells during sensory processing. Nature 428:856–860

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Jones JA, Callan DE (2003) Brain activity during audiovisual speech perception: an fMRI study of the McGurk effect. Neuroreport 14:1129–1133

    PubMed  Article  Google Scholar 

  52. 52.

    Saito DN, Yoshimura K, Kochiyama T, Okada T, Honda M, Sadato N (2005) Cross-modal binding and activated attentional networks during audio-visual speech integration: a functional MRI study. Cereb Cortex 15:1750–1760

    PubMed  Article  Google Scholar 

  53. 53.

    Sekiyama K, Kanno I, Miura S, Sugita Y (2003) Auditory-visual speech perception examined by fMRI and PET. Neurosci Res 47:277–287

    PubMed  Article  Google Scholar 

  54. 54.

    Skipper JI, Nusbaum HC, Small SL (2005) Listening to talking faces: motor cortical activation during speech perception. Neuroimage 25:76–89

    PubMed  Article  Google Scholar 

  55. 55.

    Ehrsson HH, Holmes NP, Passingham RE (2005) Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J Neurosci 25:10564–10573

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Ehrsson HH, Spence C, Passingham RE (2004) That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 305:875–877

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Calvert GA, Spence C, Stein BE (2004) The handbook of multisensory processes. MIT, Cambridge

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Taipei Veterans General Hospital (V97C1-008) and National Science Council, Taiwan (96-2752-B-010-008-PAE). The authors are grateful to Mr. Chou-Ming Cheng for fMRI technical assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jen-Chuen Hsieh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shih, L.Y.L., Chen, LF., Kuo, WJ. et al. Sensory Acquisition in the Cerebellum: An fMRI Study of Cerebrocerebellar Interaction During Visual Duration Discrimination. Cerebellum 8, 116–126 (2009). https://doi.org/10.1007/s12311-008-0082-4

Download citation

Keywords

  • Cerebrocerebellum interaction
  • Visual timing
  • Sensory congruency
  • Cerebellum
  • fMRI