Skip to main content

Advertisement

Log in

Thyrotropin-releasing hormone (TRH) in the cerebellum

  • Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Thyrotropin-releasing hormone (TRH) was originally isolated from the hypothalamus. Besides controlling the secretion of TSH from the anterior pituitary, this tripeptide is widely distributed in the central nervous system and regarded as a neurotransmitter or modulator of neuronal activities in extrahypothalamic regions, including the cerebellum. TRH has an important role in the regulation of energy homeostasis, feeding behavior, thermogenesis, and autonomic regulation. TRH controls energy homeostasis mainly through its hypophysiotropic actions to regulate circulating thyroid hormone levels. Recent investigations have revealed that TRH production is regulated directly at the transcriptional level by leptin, one of the adipocytokines that plays a critical role in feeding and energy expenditure. The improvement of ataxic gait is one of the important pharmacological properties of TRH. In the cerebellum, cyclic GMP has been shown to be involved in the effects of TRH. TRH knockout mice show characteristic phenotypes of tertiary hypothyroidism, but no morphological changes in their cerebellum. Further analysis of TRH-deficient mice revealed that the expression of PFTAIRE protein kinase1 (PFTK1), a cdc2-related kinase, in the cerebellum was induced by TRH through the NO-cGMP pathway. The antiataxic effect of TRH and TRH analogs has been investigated in rolling mouse Nagoya (RMN) or 3-acetylpyridine treated rats, which are regarded as a model of human cerebellar degenerative disease. TRH and TRH analogs are promising clinical therapeutic agents for inducing arousal effects, amelioration of mental depression, and improvement of cerebellar ataxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boler J, Enzmann F, Folkers K, Bowers CY, Schally AV. The identity of chemical and hormonal properties of the thyrotropin releasing hormone and pyroglutamyl-histidylproline amide. Biochem Biophys Res Commun. 1969;37:705–10.

    PubMed  CAS  Google Scholar 

  2. Burgus R, Dunn TF, Desiderio D, Guillemin R. Molecular structure of the hypothalamic hypophysiotropic TRF factor of ovine origin: mass spectrometry demonstration of the PCA-His-Pro-NH2 sequence. C R Acad Sci Hebd Seances Acad Sci D. 1969;269:1870–3.

    PubMed  CAS  Google Scholar 

  3. Jackson IM. Thyrotropin-releasing hormone. N Engl J Med. 1982;306:145–55.

    PubMed  CAS  Google Scholar 

  4. Morley JE. Extrahypothalamic thyrotropin releasing hormone (TRH) – its distribution and its functions. Life Sci. 1979;25:1539–50.

    PubMed  CAS  Google Scholar 

  5. Barrington EJW. Hormones and evolution. London: Academic Press, 1979.

    Google Scholar 

  6. Richter K, Kawashima E, Egger R, Kreil G. Biosynthesis of thyrotropin releasing hormone in the skin of Xenopus laevis: partial sequence of the precursor deduced from cloned cDNA. Embo J. 1984;3:617–21.

    PubMed  CAS  Google Scholar 

  7. Lechan RM, Wu P, Jackson IM, Wolf H, Cooperman S, Mandel G, Goodman RH. Thyrotropin-releasing hormone precursor: characterization in rat brain. Science. 1986;231:159–61.

    PubMed  CAS  Google Scholar 

  8. Yamada M, Radovick S, Wondisford FE, Nakayama Y, Weintraub BD, Wilber JF. Cloning and structure of human genomic DNA and hypothalamic cDNA encoding human prepro thyrotropin-releasing hormone. Mol Endocrinol. 1990;4:551–6.

    PubMed  CAS  Google Scholar 

  9. Satoh T, Yamada M, Monden T, Iizuka M, Mori M. Cloning of the mouse hypothalamic preprothyrotropinreleasing hormone (TRH) cDNA and tissue distribution of its mRNA. Brain Res Mol Brain Res. 1992;14:131–5.

    PubMed  CAS  Google Scholar 

  10. Redei E, Hilderbrand H, Aird F. Corticotropin releaseinhibiting factor is preprothyrotropin-releasing hormone-(178-199). Endocrinology. 1995;136:3557–63.

    PubMed  CAS  Google Scholar 

  11. Bulant M, Roussel JP, Astier H, Nicolas P, Vaudry H. Processing of thyrotropin-releasing hormone prohormone (pro-TRH) generates a biologically active peptide, prepro-TRH-(160-169), which regulates TRH-induced thyrotropin secretion. Proc Natl Acad Sci USA. 1990;87:4439–43.

    PubMed  CAS  Google Scholar 

  12. Yamada M, Iwasaki T, Satoh T, Monden T, Konaka S, Murakami M, Iriuchijima T, Mori M. Activation of the thyrotropin-releasing hormone (TRH) receptor by a direct precursor of TRH, TRH-Gly. Neurosci Lett. 1995;196:109–12.

    CAS  Google Scholar 

  13. Yamada M, Satoh T, Monden T, Mori M. Assignment of the thyrotropin-releasing hormone gene (TRH) to human chromosome 3q13.3–wq21 by in situ hybridization. Cytogenet Cell Genet. 1999;87:275.

    PubMed  CAS  Google Scholar 

  14. Winokur A, Utiger RD. Thyrotropin-releasing hormone: regional distribution in rat brain. Science. 1974;185:265–7.

    PubMed  CAS  Google Scholar 

  15. Brownstein MJ, Palkovits M, Saavedra JM, Bassiri RM, Utiger RD. Thyrotropin-releasing hormone in specific nuclei of rat brain. Science. 1974;185:267–9.

    PubMed  CAS  Google Scholar 

  16. Lechan RM, Jackson IM. Immunohistochemical localization of thyrotropin-releasing hormone in the rat hypothalamus and pituitary. Endocrinology. 1982;111:55–65.

    PubMed  CAS  Google Scholar 

  17. Segerson TP, Kauer J, Wolfe HC, Mobtaker H, Wu P, Jackson IM, Lechan RM. Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus. Science. 1987;238:78–80.

    PubMed  CAS  Google Scholar 

  18. Aizawa T, Greer MA. Delineation of the hypothalamic area controlling thyrotropin secretion in the rat. Endocrinology. 1981;109:1731–8.

    PubMed  CAS  Google Scholar 

  19. Yamada M, Saga Y, Shibusawa N, Hirato J, Murakami M, Iwasaki T, Hashimoto K, Satoh T, Wakabayashi K, Taketo MM, Mori M. Tertiary hypothyroidism and hyperglycemia in mice with targeted disruption of the thyrotropin-releasing hormone gene. Proc Natl Acad Sci USA. 1997;94:10862–7.

    PubMed  CAS  Google Scholar 

  20. Taylor T, Weintraub BD. Altered thyrotropin (TSH) carbohydrate structures in hypothalamic hypothyroi dism created by paraventricular nuclear lesions are cor rected by in vivo TSH-releasing hormone administration. Endocrinology. 1989;125:2198–203.

    PubMed  CAS  Google Scholar 

  21. Beck-Peccoz P, Amr S, Menezes-Ferreira MM, Faglia G, Weintraub BD. Decreased receptor binding of biologically inactive thyrotropin in central hypothyroidism. Effect of treatment with thyrotropin-releasing hormone. N Engl J Med. 1985;312:1085–90.

    PubMed  CAS  Google Scholar 

  22. Lechan RM, Fekate C. The TRH neuron:a hypothalamic integrator of energy metabolism. Progress of brain research. 2006;153:209–35.

    CAS  Google Scholar 

  23. Kielar D, Clark JS, Ciechanowicz A, Kurzawski G, Sulikowski T, Naruszewicz M. Leptin receptor isoforms expressed in human adipose tissue. Metabolism. 1998;47:844–47.

    PubMed  CAS  Google Scholar 

  24. Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK. Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol. 2003;457:213–35.

    PubMed  CAS  Google Scholar 

  25. Blake NG, Eckland DJ, Foster OJ, Lightman SL. Inhibition of hypothalamic thyrotropin-releasing hormone messenger ribonucleic acid during food deprivation. Endocrinology. 1991;129:2714–8.

    PubMed  CAS  Google Scholar 

  26. Harris AR, Fang SL, Azizi F, Lipworth L, Vagenakis AG, Barverman LE. Effect of starvation on hypothalamicpituitary-thyroid function in the rat. Metabolism. 1978;27:1074–83.

    PubMed  CAS  Google Scholar 

  27. Rondeel JM, Heide R, de Greef WJ, van Toor H, van Haasteren GA, Klootwijk W, et al. Effect of starvation and subsequent refeeding on thyroid function and release of hypothalamic thyrotropin-releasing hormone. Neuroendocrinology. 1992;56:348–53.

    PubMed  CAS  Google Scholar 

  28. Fekete C, Legradi G, Mihaly E, Huang QH, Tatro JB, Rand WM, et al. Alpha-Melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropinreleasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression. J Neurosci. 2000;20:1550–8.

    PubMed  CAS  Google Scholar 

  29. Kim MS, Small CJ, Stanley SA, Morgan DG, Seal LJ, Kong WM, et al. The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effect of leptin. J Clin Invest. 2000;105:1005–11.

    PubMed  CAS  Google Scholar 

  30. Diano S, Naftolin F, Goglia F, Horvath TL. Fastinginduced increase in type II iodothyronine deiodinase activity and messenger ribonucleic acid levels is not reversed by thyroxine in the rat hypothalamus. Endocrinology. 1998;139:2879–84.

    PubMed  CAS  Google Scholar 

  31. Coppola A, Meli R, Diano S. Inverse shift in circulating corticosterone and leptin levels elevates hypothalamic deiodinase type 2 in fasted rats. Endocrinology. 2005;146:2827–33.

    PubMed  CAS  Google Scholar 

  32. Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382:250–2.

    PubMed  CAS  Google Scholar 

  33. Legradi G, Emerson CH, Ahima RS, Flier JS, Lechan RM. Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology. 1997;138:2569–76.

    PubMed  CAS  Google Scholar 

  34. Legradi G, Emerson CH, Ahima RS, Rand WM, Flier JS, Lechan RM. Arcuate nucleus ablation prevents fastinginduced suppression of ProTRH mRNA in the hypothalamic paraventricular nucleus. Neuroendocrinology. 1998;68:89–97.

    PubMed  CAS  Google Scholar 

  35. Diano S, Naftolin F, Goglia F, Horvath TL. Segregation of the intra- and extrahypothalamic neuropeptide Y and catecholaminergic inputs on paraventricular neurons, including those producing thyrotropin-releasing hormone. Regul Pept. 1998;75–76:117–26.

    PubMed  Google Scholar 

  36. Arancibia S, Rage F, Astier H, Tapia-Arancibia L. Neuro endocrine and autonomous mechanisms underlying thermoregulation in cold environment. Neuroendocrinology. 1996;64:257–67.

    PubMed  CAS  Google Scholar 

  37. Arancibia S, Tapia- Arancibia L, Assenmacher I, Astier H. Direct evidence of short-term cold-induced TRH release in the median eminence. Neuroendocrinology. 1983;37:225–28.

    PubMed  CAS  Google Scholar 

  38. Tapia- Arancibia L, Arancibia S, Astier H. Evidence for a1-adrenergic stimulatory control of in vitro release of immunoreactive thyrotropin-releasing hormone from rat median eminence: in vitro corroboration. Endocrinology. 1985;116:2314–19.

    PubMed  CAS  Google Scholar 

  39. Bassiri RM, Utiger RD. The preparation and specificity of antibody to thyrotropin releasing hormone. Endocrinology. 1972;90:722–7.

    PubMed  CAS  Google Scholar 

  40. Jackson IM, Reichlin S. Thyrotropin-releasing hormone (TRH): distribution in hypothalamic and extrahypothalamic brain tissues of mammalian and submammalian chordates. Endocrinology. 1974;95:854–62.

    PubMed  CAS  Google Scholar 

  41. Oliver C, Eskay RL, Ben-Jonathan N, Porter JC. Distribution and concentration of TRH in the rat brain. Endocrinology. 1974;95:540–6.

    PubMed  CAS  Google Scholar 

  42. Eskay RL, Long RT, Palkovits M. Localization of immunoreactive thyrotropin releasing hormone in the lower brainstem of the rat. Brain Res. 1983;277:159–62.

    PubMed  CAS  Google Scholar 

  43. Hoffer BJ, Siggins GR, Bloom FE. Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis. Brain Res. 1971;25:523–34.

    PubMed  CAS  Google Scholar 

  44. Mitsuma T, Hirooka Y, Kimura M, Nogimori T. Effects of hypophysectomy on pro-thyrotropin-releasing hormone concentrations in rats. Exp Clin Endocrinol. 1991;97:45–9.

    PubMed  CAS  Google Scholar 

  45. Pacheco MF, McKelvy JF, Woodward DJ, Loudes C, Joseph-Bravo P, Krulich L, et al. TRH in the rat cerebellum: I. Distribution and concentration. Peptides. 1981;2:277–82.

    PubMed  CAS  Google Scholar 

  46. Kubek MJ, Lorincz MA, Wilber JF. The identification of thyrotropin releasing hormone (TRH) in hypothalamic and extrahypothalamic loci of the human nervous system. Brain Res. 1977;126:196–200.

    PubMed  CAS  Google Scholar 

  47. Parker CR Jr, Griffin WS, Porter JC. Age-dependent extinction of thyrotropin-releasing hormone in the human cerebellum. J Clin Endocrinol Metab. 1981;53:1233–7.

    Article  PubMed  CAS  Google Scholar 

  48. Parker CR Jr. Characterization of immunoreactive thyrotropin releasing hormone in human fetal cerebellum. J Neurochem. 1981;37:1266–71.

    PubMed  CAS  Google Scholar 

  49. Ogawa N, Yamawaki Y, Kuroda H, Ofuji T, Itoga E, Kito S. Discrete regional distributions of thyrotropin releasing hormone (TRH) receptor binding in monkey central nervous system. Brain Res. 1981;205:169–74.

    PubMed  CAS  Google Scholar 

  50. Burt DR, Taylor RL. Binding sites for thyrotropin-releasing hormone in sheep nucleus accumbens resemble pituitary receptors. Endocrinology. 1980;106:1416–23.

    PubMed  CAS  Google Scholar 

  51. Ogawa N, Yamawaki Y, Kuroda H, Nukina I, Ota Z, Fujino M, et al. Characteristics of thyrotropin releasing hormone (TRH) receptors in rat brain. Peptides. 1982;3:669–77.

    PubMed  CAS  Google Scholar 

  52. Rostene WH, Morgat JL, Dussaillant M, Rainbow TC, Sarrieau A, Vial M, et al. In vitro biochemical characterization and autoradiographic distribution of 3H-thyrotropinreleasing hormone binding sites in rat brain sections. Neuroendocrinology. 1984;39:81–6.

    PubMed  CAS  Google Scholar 

  53. Satoh T, Feng P, Kim UJ, Wilber JF. Identification of thyrotropin-releasing hormone receptor messenger RNA in the rat central nervous system and eye. Brain Res Mol Brain Res. 1993;19:175–8.

    PubMed  CAS  Google Scholar 

  54. Kaji H, Takahashi Y, Chihara K. The regional distribution of thyrotropin-releasing hormone receptor messenger ribonucleic acid in the brain. Neurosci Lett. 1993;151:81–4.

    PubMed  CAS  Google Scholar 

  55. Asai H, Kinoshita K, Yamamura M, Matsuoka Y. Diversity of thyrotropin-releasing hormone receptors in the pituitary and discrete brain regions of rats. Jpn J Pharmacol. 1999;79:313–7.

    PubMed  CAS  Google Scholar 

  56. Cao J, O’Donnell D, Vu H, Payza K, Pou C, Godbout C, et al. Cloning and characterization of a cDNA encoding a novel subtype of rat thyrotropin-releasing hormone receptor. J Biol Chem. 1998;273:32281–7.

    PubMed  CAS  Google Scholar 

  57. Sun Y, Lu X, Gershengorn MC. Thyrotropin-releasing hormone receptors – similarities and differences. J Mol Endocrinol. 2003;30:87–97.

    PubMed  CAS  Google Scholar 

  58. Hsieh KP, Martin TF. Thyrotropin-releasing hormone and gonadotropin-releasing hormone receptors activate phospholipase C by coupling to the guanosine triphosphatebinding proteins Gq and G11. Mol Endocrinol. 1992;6:1673–81.

    PubMed  CAS  Google Scholar 

  59. Collazos A, Diouf B, Guerineau NC, Quittau-Prevostel C, Peter M, Coudane F, et al. A spatiotemporally coordinated cascade of protein kinase C activation controls isoformselective translocation. Mol Cell Biol. 2006;26:2247–61.

    PubMed  CAS  Google Scholar 

  60. Jefferson AB, Travis SM, Schulman H. Activation of multifunctional Ca2+/calmodulin-dependent protein kinase in GH3 cells. J Biol Chem. 1991;266:1484–90.

    PubMed  CAS  Google Scholar 

  61. Pfleger KD, Kroeger KM, Eidne KA. Receptors for hypothalamic releasing hormones TRH and GnRH: oligomerization and interactions with intracellular proteins. Semin Cell Dev Biol. 2004;15:269–80.

    PubMed  CAS  Google Scholar 

  62. Ohmichi M, Sawada T, Kanda Y, Koike K, Hirota K, Miyake A, et al. Thyrotropin-releasing hormone stimulates MAP kinase activity in GH3 cells by divergent pathways. Evidence of a role for early tyrosine phosphorylation. J Biol Chem. 1994;269:3783–8.

    PubMed  CAS  Google Scholar 

  63. Wang W, Gershengorn MC. Rat TRH receptor type 2 exhibits higher basal signaling activity than TRH receptor type 1. Endocrinology. 1999;140:4916–9.

    PubMed  CAS  Google Scholar 

  64. O’Dowd BF, Lee DK, Huang W, Nguyen T, Cheng R, Liu Y, et al. TRH-R2 exhibits similar binding and acute signaling but distinct regulation and anatomic distribution compared with TRH-R1. Mol Endocrinol. 2000;14:183–93.

    PubMed  CAS  Google Scholar 

  65. Collu R, Tang J, Castagne J, Lagace G, Masson N, Huot C, et al. A novel mechanism for isolated central hypothyroidism: inactivating mutations in the thyrotropin-releasing hormone receptor gene. J Clin Endocrinol Metab. 1997;82:1561–5.

    PubMed  CAS  Google Scholar 

  66. Beck-Peccoz P, Persani L, Calebiro D, Bonomi M, Mannavola D, Campi I. Syndromes of hormone resistance in the hypothalamic-pituitary-thyroid axis. Best Pract Res Clin Endocrinol Metab. 2006;20:529–46.

    PubMed  CAS  Google Scholar 

  67. Rabeler R, Mittag J, Geffers L, Ruther U, Leitges M, Parlow AF, et al. Generation of thyrotropin-releasing hormone receptor 1-deficient mice as an animal model of central hypothyroidism. Mol Endocrinol. 2004;18:1450–60.

    PubMed  CAS  Google Scholar 

  68. Yamaguchi T, Hayashi K, Murakami H, Maruyama S, Yamaguchi M. Distribution and characterization of the TRH receptors in the CNS of ataxic mutant mouse. Neurochem Res. 1984;9:477–84.

    PubMed  CAS  Google Scholar 

  69. Breese GR, Cott JM, Cooper BR, Prange AJ Jr, Lipton MA, Plotnikoff NP. Effects of thyrotropin-releasing hormone (TRH) on the actions of pentobarbital and other centrally acting drugs. J Pharmacol Exp Ther. 1975;193:11–22.

    PubMed  CAS  Google Scholar 

  70. Kastin AJ, Ehrensing RH, Schalch DS, Anderson MS. Improvement in mental depression with decreased thyrotropin response after administration of thyrotropin-releasing hormone. Lancet. 1972;2:740–2.

    PubMed  CAS  Google Scholar 

  71. Marangell LB, George MS, Callahan AM, Ketter TA, Pazzaglia PJ, L’Herrou TA, et al. Effects of intrathecal thyrotropin-releasing hormone (protirelin) in refractory depressed patients. Arch Gen Psychiatry. 1997;54:214–22.

    PubMed  CAS  Google Scholar 

  72. Renaud LP, Martin JB, Brazeau P. Depressant action of TRH, LH-RH and somatostatin on activity of central neurones. Nature. 1975;255:233–5.

    PubMed  CAS  Google Scholar 

  73. Yoshida M, Niijima K, Nagatsuka Y, Kawashima S, Tokuda H. Effects of TRH and DN-1417 on cerebellar neurons in comparison with those on basal ganglia. In: Sobue I, editor. TRH and spinocerebellar degeneration. Amsterdam: Elsevier Science Publishers B.V.; 1986. pp 97–103.

    Google Scholar 

  74. Keller HH, Bartholini G, Pletscher A. Enhancement of cerebral noradrenaline turnover by thyrotropin-releasing hormone. Nature. 1974;248:528–9.

    PubMed  CAS  Google Scholar 

  75. Forrester PA. Proceedings: An anticholinergic effect of general anaesthetics on cerebrocortical neurones. Br J Pharmacol. 1975;55:275–6.

    Google Scholar 

  76. Yarbrough GG. TRH potentiates excitatory actions of acetylcholine on cerebral cortical neurones. Nature. 1976;263:523–4.

    PubMed  CAS  Google Scholar 

  77. Sackeim HA. Central issues regarding the mechanisms of action of electroconvulsive therapy: directions for future research. Psychopharmacol Bull. 1994;30:281–308.

    PubMed  CAS  Google Scholar 

  78. Kubek MJ, Low WC, Sattin A, Morzorati SL, Meyerhoff JL, Larsen SH. Role of TRH in seizure modulation. In: Mettcalf G, Jackson IM, editors. Thyrotropin-releasing hormone: Biomedical significance. Ann N Y Acad Sci. Vol. 553, New York: The New York Academy of Sciences; 1989. pp 286–303.

    Google Scholar 

  79. Pekary AE, Meyerhoff JL, Sattin A. Electroconvulsive seizures modulate levels of thyrotropin releasing hormone and related peptides in rat hypothalamus, cingulate and lateral cerebellum. Brain Res. 2000;884:174–83.

    PubMed  CAS  Google Scholar 

  80. Dording CM. Antidepressant augmentation and combinations. Psychiatr Clin North Am. 2000;23:743–55.

    PubMed  CAS  Google Scholar 

  81. Pekary AE, Sattin A, Meyerhoff JL, Chilingar M. Valproate modulates TRH receptor, TRH and TRH-like peptide levels in rat brain. Peptides. 2004;25:647–58.

    PubMed  CAS  Google Scholar 

  82. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276:36734–41.

    PubMed  CAS  Google Scholar 

  83. Steiner AL, Wehmann RE, Parker CW, Kipnis DM. Radioimmunoassay for the measurement of cyclic nucleotides. Adv Cyclic Nucleotide Res. 1972;2:51–61.

    PubMed  CAS  Google Scholar 

  84. Redos JD, Catravas GN, Hunt WA. Ethanol-induced depletion of cerebellar guanosine 39,59-cyclic monophosphate. Science. 1976;193:58–9.

    PubMed  CAS  Google Scholar 

  85. Mailman RB, Frye GD, Mueller RA, Breese GR. Thyrotropin-releasing hormone reversal of ethanol-induced decreases in cerebellar cGMP. Nature. 1978;272:832–3.

    PubMed  CAS  Google Scholar 

  86. Mailman RB, Frye GD, Mueller RA, Breese GR. Change in brain guanosine 39,59-monophosphate (cGMP) content by thyrotropin-releasing hormone. J Pharmacol Exp Ther. 1979;208:169–75.

    PubMed  CAS  Google Scholar 

  87. Nakayama T, Hashimoto T, Nagai Y. Involvement of glutamate and gamma-aminobutyric acid (GABA)-ergic systems in thyrotropin-releasing hormone-induced rat cerebellar cGMP formation. Eur J Pharmacol. 1996;316:157–64.

    PubMed  CAS  Google Scholar 

  88. Biggio G, Guidotti A. Climbing fiver activation and 39,59-cyclic guanosine monophosphate (cGMP) content in cortex and deep nuclei of cerebellum. Brain Res. 1976;107:365–73.

    PubMed  CAS  Google Scholar 

  89. Konagaya M, Takayanagi T. Cerebellar cyclic GMP and TRH. In: Sobue I, editor. TRH and spinocerebellar degeneration. Amsterdam: Elsevier Science Publishers B.V.; 1986. pp 59–64.

    Google Scholar 

  90. Imamura M, Yamada M, Mori M, Prasad C. Thyrotropin releasing hormone stimulation of GABA-gated but not basal chloride ion influx in rat cerebellum. Peptides. 1999;20:1375–9.

    PubMed  CAS  Google Scholar 

  91. Tatsuoka Y, Kato Y, Imura H. Inhibition by DN-1417 (a TRH derivative) of [3H]GABA binding in the rat brain. Neurosci Lett. 1983;42:149–54.

    PubMed  CAS  Google Scholar 

  92. Murad F. Regulation of cytosolic guanylyl cyclase by nitric oxide: the NO-cyclic GMP signal transduction system. Adv Pharmacol. 1994;26:19–33.

    PubMed  CAS  Google Scholar 

  93. Hashida T, Yamada M, Hashimoto K, Shibusawa N, Monden T, Satoh T, Mori M. A novel TRH-PFTAIRE protein kinase 1 pathway in the cerebellum: subtractive hybridization analysis of TRH-deficient mice. Endocrinology. 2002;143:2808–11.

    PubMed  CAS  Google Scholar 

  94. Shibusawa N, Yamada M, Hirato J, Monden T, Satoh T, Mori M. Requirement of thyrotropin-releasing hormone for the postnatal functions of pituitary thyrotrophs: ontogeny study of congenital tertiary hypothyroidism in mice. Mol Endocrinol. 2000;14:137–46.

    PubMed  CAS  Google Scholar 

  95. Iriuchijima T, Mori M. Regional dissociation of cyclic AMP and inositol phosphate formation in response to thyrotropinreleasing hormone in the rat brain. J Neurochem. 1989;52:1944–6.

    PubMed  CAS  Google Scholar 

  96. Miyamoto Y, Kikkawa R, Hatanaka I, Yasuda H, Terada M, Yamashita M, Shigeta Y. Thyrotropin-releasing hormone reduces myo-inositol content in rat cerebellum pretreated with lithium. J Neurochem. 1987;49:88–91.

    PubMed  CAS  Google Scholar 

  97. Muroga T, Adachi K, Konagaya M, Takayanagi T, Sobue I. Effects of thyrotropin releasing hormone on cerebellar mutant mice – a kinesiological comparison between rolling mouse Nagoya, weaver and reeler. Jpn J Med. 1982;21:101–8.

    PubMed  CAS  Google Scholar 

  98. Oda S. The observation of rolling mouse Nagoya (rol), a new neurological mutant and its maintenance. Exp Anim. 1973;22:281–8.

    CAS  Google Scholar 

  99. Mori Y, Wakamori M, Oda S, Fletcher CF, Sekiguchi N, Mori E, Copeland NG, Jenkins NA, Matsushita K, Matsuyama Z, Imoto K. Reduced voltage sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tg(rol)). J Neurosci. 2000;20:5654–62.

    PubMed  CAS  Google Scholar 

  100. Suh YS, Oda S, Kang YH, Kim H, Rhyu IJ. Apoptotic cell death of cerebellar granule cells in rolling mouse Nagoya. Neurosci Lett. 2002;325:1–4.

    PubMed  CAS  Google Scholar 

  101. Barili P, Bronzetti E, Ricci A, Zaccheo D, Amenta F. Microanatomical localization of dopamine receptor protein immunoreactivity in the rat cerebellar cortex. Brain Res. 2000;854:130–8.

    PubMed  CAS  Google Scholar 

  102. Sawada K, Komatsu S, Haga H, Sun XZ, Hisano S, Fukui Y. Abnormal expression of tyrosine hydroxylase immunoreactivity in cerebellar cortex of ataxic mutant mice. Brain Res. 1999;829:107–12.

    PubMed  CAS  Google Scholar 

  103. Nakamura T, Honda M, Kimura S, Tanabe M, Oda S, Ono H. Taltirelin improves motor ataxia independently of monoamine levels in rolling mouse nagoya, a model of spinocerebellar atrophy. Biol Pharm Bull. 2005;28:2244–7.

    PubMed  CAS  Google Scholar 

  104. Keller HH, Bartholini G, Pletscher A. Enhancement of cerebral noradrenaline turnover by thyrotropin-releasing hormone. Nature. 1974;248:528–9.

    PubMed  CAS  Google Scholar 

  105. Ando K, Matui K. Anti-ataxic effects of TRH on various mouse models of ataxia. In: Sobue I, editor. TRH and spinocerebellar degeneration. Amsterdam: Elsevier Science Publishers B.V.; 1986. pp 135–40.

    Google Scholar 

  106. Mano Y, Matsui K, Toyoshima E, Ando K. The pharmacological effect of thyrotropin-releasing hormone on ataxic mutant mice. Acta Neurol Scand. 1986;73:352–8.

    PubMed  CAS  Google Scholar 

  107. Desclin JC, Escubi J. Effects of 3-acetylpyridine on the central nervous system of the rat, as demonstrated by silver methods. Brain Res. 1974;77:349–64.

    PubMed  CAS  Google Scholar 

  108. Kinoshita K, Watanabe Y, Yamamura M, Matsuoka Y. TRH receptor agonists ameliorate 3-acetylpyridine-induced ataxia through NMDA receptors in rats. Eur J Pharmacol. 1998;343:129–33.

    PubMed  CAS  Google Scholar 

  109. Kasparov S, Pawelzik H, Zieglgansberger W. Thyrotropinreleasing hormone enhances excitatory postsynaptic potentials in neocortical neurons of the rat in vitro. Brain Res. 1994;656:229–35.

    PubMed  CAS  Google Scholar 

  110. Stocca G, Nistri A. Enhancement of NMDA receptor mediated synaptic potentials of rat hippocampal neurones in vitro by thyrotropin releasing hormone. Neurosci Lett. 1995;184:9–12.

    PubMed  CAS  Google Scholar 

  111. Kinoshita K, Watanabe Y, Asai H, Matsuoka Y. Metabolic abnormalities caused by 3-acetylpyridine in the cerebral motor regions of rats: partial recovery by thyrotropinreleasing hormone. Jpn J Pharmacol. 2000;82:295–300.

    PubMed  CAS  Google Scholar 

  112. Sobue I. Epidemiology, clinical features and pathophysiology of spinocerebellar degenerations in Japan. In: Sobue I, editor. TRH and spinocerebellar degeneration. Amsterdam: Elsevier Science Publishers B.V.; 1986. pp 151–6.

    Google Scholar 

  113. Sobue I. A new concept on the effects of hypothalamic hormone on central nervous system. Clin. Neurol. (Tokyo). 1977;17:791–9.

    CAS  Google Scholar 

  114. Sobue I, Yamamoto H, Konagaya M, Iida M, Takayanagi T. Effect of thyrotropin-releasing hormone on ataxia of spinocerebellar degeneration. Lancet. 1980;1:418–9.

    PubMed  CAS  Google Scholar 

  115. Sobue I, Takayanagi T, Nakanishi T, Tsubaki T, Uono M, Kinoshita M, et al. Controlled trial of thyrotropin releasing hormone tartrate in ataxia of spinocerebellar degenerations. J Neurol Sci. 1983;61:235–48.

    PubMed  CAS  Google Scholar 

  116. Matsuoka Y, Kato K, Sobue I. Effects of DN-1417 an ataxia of SCD. In: Sobue I, editor. TRH and Spinocerebellar Degeneration. Amsterdam: Elsevier Science Publishers B.V.; 1986. pp 189–96.

    Google Scholar 

  117. Duenas AM, Goold R, Giunti P. Molecular pathogenesis of spinocerebellar ataxias. Brain. 2006;129:1357–70.

    PubMed  Google Scholar 

  118. Koeppen AH. The pathogenesis of spinocerebellar ataxia. Cerebellum. 2005;4:62–73.

    PubMed  CAS  Google Scholar 

  119. Michlewski G, Krzyzosiak WJ. Pathogenesis of spinocerebellar ataxias viewed from the RNA perspective. Cerebellum. 2005;4:19–24.

    PubMed  CAS  Google Scholar 

  120. Ogawa M. Pharmacological treatments of cerebellar ataxia. Cerebellum. 2004;3:107–11.

    PubMed  CAS  Google Scholar 

  121. Horita A. An update on the CNS actions of TRH and its analogs. Life Sci. 1998;62:1443–8.

    PubMed  CAS  Google Scholar 

  122. Fehlings MG, Baptiste DC. Current status of clinical trials for acute spinal cord injury. Injury. 2005;36(Suppl. 2):B113–22.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanobu Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibusawa, N., Hashimoto, K. & Yamada, M. Thyrotropin-releasing hormone (TRH) in the cerebellum. Cerebellum 7, 84–95 (2008). https://doi.org/10.1007/s12311-008-0033-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0033-0

Key words

Navigation