Skip to main content

Advertisement

Log in

Compartmentation of gaba b receptor2 expression in the mouse cerebellar cortex

  • Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Despite the apparent uniformity in cellular composition of the adult mammalian cerebellar cortex, it is actually highly compartmentalized into transverse zones, and within each zone the cortex is further subdivided into a reproducible array of parasagittal stripes. The most extensively studied compartmentation antigen is zebrin II/aldolase c, which is expressed by a subset of Purkinje cells forming parasagittal stripes. Gamma-aminobutyric acid B receptors (GABABRs) are G-proteincoupled receptors that mediate a slow, prolonged form of inhibition in many brain areas. This study examines the localization of GABABR2 in the mouse cerebellum by using whole mount and section immunohistochemistry. The data reveal that GABABR2 immunoreactivity is expressed strongly in the dendrites of a subset of Purkinje cells that form a reproducible array of transverse zones and parasagittal stripes. By using double immunostaining, the striped pattern of GABABR2 expression was shown to be identical to that revealed by anti-zebrin II and complementary to that of phospholipase Cß4. This finding supports previous functional studies showing that inhibitory neurotransmission is highly patterned in the cerebellar cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawkes R, Brochu G, Doré L, Gravel C, Leclerc N. Zebrins: Molecular markers of compartmentation in the cerebellum. In: Llinás R, Sotelo C, editors. The cerebellum revisited. New York: Springer-Verlag, 1992. pp 22–55.

    Google Scholar 

  2. Hawkes R. An anatomical model of cerebellar modules. Prog Brain Res. 1997;114:39–52.

    Article  PubMed  CAS  Google Scholar 

  3. Hawkes R, Eisenman LM. Stripes and zones: The origins of regionalization of the adult cerebellum. Perspect Dev Neurobiol. 1997;5:95–104.

    PubMed  CAS  Google Scholar 

  4. Herrup K, Kuemerle B. The compartmentalization of the cerebellum. Ann Rev Neurosci. 1997;20:61–90.

    Article  PubMed  CAS  Google Scholar 

  5. Oberdick J, Baader SL, Schilling K. From zebra stripes to postal zones: Deciphering patterns of gene expression in the cerebellum. Trends Neurosci. 1998;21:383–90.

    Article  PubMed  CAS  Google Scholar 

  6. Armstrong C, Hawkes R. Pattern formation in the cerebellar cortex. Biochem Cell Biol. 2000;78:551–62.

    Article  PubMed  CAS  Google Scholar 

  7. Ozol K, Hayden JM, Oberdick J, Hawkes R. Transverse zones in the vermis of the mouse cerebellum. J Comp Neurol. 1999;412:95–111.

    Article  PubMed  CAS  Google Scholar 

  8. Armstrong C, Krueger-Naug AM, Currie WC, Hawkes R. Constitutive expression of the 25 kDa heat shock protein Hsp25 reveals novel parasagittal bands of Purkinje cells in the adult mouse cerebellar cortex. J Comp Neurol. 2000;416:383–97.

    Article  PubMed  CAS  Google Scholar 

  9. Sillitoe RV, Hawkes R. Whole-mount immunohistochemistry: A high-throughput screen for patterning defects in the mouse cerebellum. J Histochem Cytochem. 2002;50:235–44.

    PubMed  CAS  Google Scholar 

  10. Brochu G, Maler L, Hawkes R. Zebrin II: A polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol. 1990;291:538–52.

    Article  PubMed  CAS  Google Scholar 

  11. Ahn AH, Dziennis S, Hawkes R, Herrup K. The cloning of zebrin II reveals its identity with aldolase C. Development. 1994;120:2081–90.

    PubMed  CAS  Google Scholar 

  12. Sillitoe RV, Marzban H, Larouche M, Zahedi. Affanni J, Hawkes R. Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. Prog Brain Res. 2005;148:283–97.

    Article  PubMed  Google Scholar 

  13. Akintunde A, Eisenman LM. External cuneocerebellar projections and Purkinje cell zebrin II bands: A direct comparison of parasagittal banding in the mouse cerebellum. J Chem Neuroanat. 1994;7:75–86.

    Article  PubMed  CAS  Google Scholar 

  14. Ji Z, Hawkes R. Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: Spinocerebellar and cuneocerebellar projections. Neuroscience. 1994;61:935–54.

    Article  PubMed  CAS  Google Scholar 

  15. Gravel C, Eisenman LE, Sasseville R, Hawkes R. Parasagittal organization of the rat cerebellar cortex: A direct correlation between antigenic Purkinje cell bands revealed by mabQ113 and the organization of the olivocerebellar projection. J Comp Neurol. 1987;263:294–310.

    Article  Google Scholar 

  16. Voogd J, Pardoe J, Ruigrok TJ, Apps R. The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: Congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J Neurosci. 2003;23:4645–56.

    PubMed  CAS  Google Scholar 

  17. Chockkan V, Hawkes R. Functional and antigenic maps in the rat cerebellum: Zebrin compartmentation and vibrissal receptive fields in lobule IXa. J Comp Neurol. 1994;345:33–45.

    Article  PubMed  CAS  Google Scholar 

  18. Chen G, Hanson CL, Ebner TJ. Functional parasagittal compartments in the rat cerebellar cortex: An in vivo optical imaging study using neutral red. J Neurophysiol. 1996;76:4169–74.

    PubMed  CAS  Google Scholar 

  19. Hallem JS, Thompson JH, Gundappa-Sulur G, Hawkes R, Bjaalie JG, Bower JM. Spatial correspondence between tactile projection patterns and the distribution of the antigenic Purkinje cell markers anti-zebrin I and anti-zebrin II in the cerebellar folium crus IIA of the rat. Neuroscience. 1999;93:1083–94.

    Article  PubMed  CAS  Google Scholar 

  20. Bettler B, Kaupmann K, Bowery N. GABAB receptors: Drugs meet clones. Curr Opin Neurobiol. 1998;8:345–50.

    Article  PubMed  CAS  Google Scholar 

  21. Bowery NG, Enna SJ. γ-Aminobutyric acid receptors: First of the functional metabotropic heterodimers. J Pharmacol Exp Ther. 2000;292:2–7.

    PubMed  CAS  Google Scholar 

  22. Misgeld U, Bijak M, Jarolimek W. A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol. 1995;46:423–62.

    Article  PubMed  CAS  Google Scholar 

  23. Couve A, Moss SJ, Pangalos MN. GABAB receptors: A new paradigm in G protein signaling. Mol Cell Neurosci. 2000;16:296–312.

    Article  PubMed  CAS  Google Scholar 

  24. Marshall FH, Jones KA, Kaupmann K, Bettler B. GABAB receptors – the first 7TM heterodimers. Trends Pharmacol Sci. 1999;20:396–9.

    Article  PubMed  CAS  Google Scholar 

  25. Möhler H, Fritschy JM. GABAB receptors make it to the top – as dimers. Trends Pharmacol Sci. 1999;20:87–9.

    Article  PubMed  Google Scholar 

  26. Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, et al. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature. 1998;396:674–9.

    Article  PubMed  CAS  Google Scholar 

  27. Bettler B, Kaupmann K, Mosbacher J, Gassmann M. Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev. 2004;84:835–67.

    Article  PubMed  CAS  Google Scholar 

  28. Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, et al. GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature. 1998;396:683–7.

    Article  PubMed  CAS  Google Scholar 

  29. Kuner R, Köhr G, Grünewald S, Eisenhardt G, Bach A, Kornau HC. Role of heteromer formation in GABAB receptor function. Science. 1999;283:74–7.

    Article  PubMed  CAS  Google Scholar 

  30. Bowery NG, Hudson AL, Price GW. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience. 1987;20:365–83.

    Article  PubMed  CAS  Google Scholar 

  31. Chu DCM, Albin RL, Young AB, Penney JB. Distribution and kinetics of GABAB binding sites in rat central nervous system: A quantitative autoradiographic study. Neuroscience. 1990;34:341–57.

    Article  PubMed  CAS  Google Scholar 

  32. Turgeon SM, Albin RL. Pharmacology, distribution, cellular localisation and development of GABAB binding in rodent cerebellum. Neuroscience. 1993;55:311–23.

    Article  PubMed  CAS  Google Scholar 

  33. Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, et al. Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature. 1997;386:239–46.

    Article  PubMed  CAS  Google Scholar 

  34. Bischoff S, Leonhard S, Reymann N, Schuler V, Shigemoto R, Kaupmann K, et al. Spatial distribution of GABABR1 receptor mRNA and binding sites in the rat brain. J Comp Neurol. 1999;412:1–16.

    Article  PubMed  CAS  Google Scholar 

  35. Fritschy JM, Sidler C, Parpan F, Gassmann M, Kaupmann K, Bettler B, et al. Independent maturation of the GABA (B) receptor subunits GABA (B1) and GABA (B2) during postnatal development in rodent brain. J Comp Neurol. 2004;477:235–52.

    Article  PubMed  CAS  Google Scholar 

  36. Luján R, Shigemoto R. Localization of metabotropic GABA receptor subunits GABAB1 and GABAB2 relative to synaptic sites in the rat developing cerebellum. Eur J Neurosci. 2006;23:1479–90.

    Article  PubMed  Google Scholar 

  37. Waldvogel HJ, Billinton A, White JH, Emson PC, Faull RL. Comparative cellular distribution of GABAA and GABAB receptors in the human basal ganglia: Immunohistochemical colocalization of the alpha 1 subunit of the GABAA receptor, and the GABABR1 and GABABR2 receptor subunits. J Comp Neurol. 2004;470:339–56.

    Article  PubMed  CAS  Google Scholar 

  38. Nakamura M, Sato K, Fukaya M, Araishi K, Aiba A, Kano M, et al. Signaling complex formation of phospholipase Cß4 with metabotropic glutamate receptor type 1alpha and 1,4,5-triphosphate receptor at the perisynapse and endoplasmic reticulum in the mouse brain. Eur J Neurosci. 2004;20:2929–44.

    Article  PubMed  Google Scholar 

  39. Sarna JR, Marzban H, Watanabe M, Hawkes R. Complementary stripes of phospholipase Cß3 and Cß4 expression by Purkinje cell subsets in the mouse cerebellum. J Comp Neurol. 2006;496:303–13.

    Article  PubMed  CAS  Google Scholar 

  40. Jiang H, Lyubarsky A, Dodd R, Vardi N, Pugh E, Baylor D, et al. Phospholipase C β4 is involved in modulating the visual response in mice. Proc Natl Acad Sci USA. 1996;93:14598–601.

    Article  PubMed  CAS  Google Scholar 

  41. Marzban H, Sillitoe RV, Hoy M, Chung SH, Rafuse VF, Hawkes R. Abnormal HNK-1 expression in the cerebellum of an N-CAM null mouse. J Neurocytol. 2004;33:117–30.

    Article  PubMed  CAS  Google Scholar 

  42. Marzban H, Chung S, Watanabe M, Hawkes R. Phospholipase Cß4 expression reveals the continuity of cerebellar topography through development. J Comp Neurol. 2007;502:857–71.

    Article  PubMed  Google Scholar 

  43. Hawkes R. Antigenic markers of cerebellar modules in the adult mouse. Biochem Soc Trans. 1992;20:391–5.

    PubMed  CAS  Google Scholar 

  44. Eisenman LM, Hawkes R. 5’-nucleotidase and the mabQ113 antigen share a common distribution in the cerebellar cortex of the mouse. Neuroscience. 1989;31:231–5.

    Article  PubMed  CAS  Google Scholar 

  45. Terada N, Banno Y, Ohno N, Fujii Y, Murate T, Sarna JR, et al. Compartmentation of the mouse cerebellar cortex by sphingosine kinase. J Comp Neurol. 2004;469:119–27.

    Article  PubMed  CAS  Google Scholar 

  46. Jeong YG, Rosales JL, Marzban H, Sillitoe RV, Park DG, Hawkes R, et al. The cyclin-dependent kinase 5 activator, p39, is expressed in stripes in the mouse cerebellum. Neuroscience. 2003;118:323–34.

    Article  PubMed  CAS  Google Scholar 

  47. Croci L, Chung SH, Masserdotti G, Gianola S, Bizzoca A, Gennarini G, et al. A key role for the HLH transcription factor EBF2COE2,/E-3 in Purkinje neuron migration and cerebellar cortical topography. Development. 2006;133:2719–28.

    Article  PubMed  CAS  Google Scholar 

  48. Batchelor AM, Garthwaite J. GABAB receptors in the parallel fibre pathway of rat cerebellum. Eur J Neurosci. 1992;4:1059–64.

    Article  PubMed  Google Scholar 

  49. Dittman JS, Regehr WG. Contributions of calcium-dependent and calcium-independent mechanisms to presynaptic inhibition at a cerebellar synapse. J Neurosci. 1996;16:1623–33.

    PubMed  CAS  Google Scholar 

  50. Vigot R, Batini C. GABAB receptor activation of Purkinje cells in cerebellar slices. Neurosci Res. 1997;29:151–60.

    Article  PubMed  CAS  Google Scholar 

  51. Gao W, Chen G, Reinert KC, Ebner TJ. Cerebellar cortical molecular layer inhibition is organized in parasagittal zones. J Neurosci. 2006;26:8377–87.

    Article  PubMed  CAS  Google Scholar 

  52. Hawkes R, Gravel C. The modular cerebellum. Prog Neurobiol. 1991;36:309–27.

    Article  PubMed  CAS  Google Scholar 

  53. Jan LY, Jan YN. Voltage-gated and inwardly rectifying potassium channels. J Physiol. 1997;505:267–82.

    Article  PubMed  CAS  Google Scholar 

  54. Murer G, Adelbrecht C, Lauritzen I, Lesage F, Lazdunski M, Agid Y. An immunocytochemical study on the distribution of two G-protein-gated inward rectifier potassium channels (GIRK2 and GIRK4) in the adult rat brain. Neuroscience. 1997;80:345–57.

    Article  PubMed  CAS  Google Scholar 

  55. Tabata T, Haruki S, Nakayama H, Kano M. GABAergic activation of an inwardly rectifying K+ current in mouse cerebellar Purkinje cells. J Physiol. 2005;563:443–57.

    Article  PubMed  CAS  Google Scholar 

  56. Tabata T, Araishi K, Hashimoto K, Hashimotodani Y, van der Putten H, Bettler B, et al. Ca2+ activity at GABAB receptors constitutively promotes metabotropic glutamate signaling in the absence of GABA. Proc Natl Acad Sci USA. 2004;101:16952–7.

    Article  PubMed  CAS  Google Scholar 

  57. Ito M. Cerebellar long-term depression: Characterization, signal transduction, and functional roles. Physiol Rev. 2001;81:1143–95.

    PubMed  CAS  Google Scholar 

  58. Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K, Shigemoto R, et al. mGluR1 in cerebellar Purkinje cells is essential for long-term depression, synapse elimination, and motor coordination. Science. 2000;288:1832–5.

    Article  PubMed  CAS  Google Scholar 

  59. Mateos JM, Osorio A, Azkue JJ, Benítez R, Elezgarai I, Bilbao A, et al. Parasagittal compartmentalization of the metabotropic glutamate receptor mGluR1b in the cerebellar cortex. Eur J Anat. 2001;5:15–21.

    Google Scholar 

  60. Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: A glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci. 1998;18:3606–19.

    PubMed  CAS  Google Scholar 

  61. Wadiche JI, Jahr CE. Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nat Neurosci. 2005;8:1329–34.

    Article  PubMed  CAS  Google Scholar 

  62. Sawada K, Haga H, Hisano S, Fukui Y. Topological relationship between corticotrophin-releasing factor-immunoreactive cerebellar afferents and tyrosine hydroxylaseimmunoreactive Purkinje cells in a hereditary ataxic mutant, rolling mouse Nagoya. Neuroscience. 2001;102:925–35.

    Article  PubMed  CAS  Google Scholar 

  63. Hawkes R, Turner RW. Compartmentation of NADPH-diaphorase activity in the mouse cerebellar cortex. J Comp Neurol. 1994;346:499–516.

    Google Scholar 

  64. Barmack NH, Qian Z, Yoshimura J. Regional and cellular distribution of protein kinase C in rat cerebellar Purkinje cells. J Comp Neurol. 2000;427:235–54.

    Article  PubMed  CAS  Google Scholar 

  65. Hirono M, Yoshioka T, Konishi S. GABAB receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nat Neurosci. 2001;4:1207–16.

    Article  PubMed  CAS  Google Scholar 

  66. Neale SA, Garthwaite J, Batchelor AM. 2001. mGlu1 receptors mediate a post-tetanic depression at parallel fibre-Purkinje cell synapses in rat cerebellum. Eur J Neurosci. 2001;14:1313–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Hawkes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, SH., Kim, CT. & Hawkes, R. Compartmentation of gaba b receptor2 expression in the mouse cerebellar cortex. Cerebellum 7, 295–303 (2008). https://doi.org/10.1007/s12311-008-0030-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0030-3

Key words

Navigation