Skip to main content
Log in

Thyroid hormone transporters in the brain

  • Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Thyroid hormone plays an essential role in proper mammalian development of the central nervous system and peripheral tissues. Lack of sufficient thyroid hormone results in abnormal development of virtually all organ systems, a syndrome termed cretinism. In particular, hypothyroidism in the neonatal period causes serious damage to neural cells and leads to mental retardation. Although thyroxine is the major product secreted by the thyroid follicular cells, the action of thyroid hormone is mediated mainly through the deiodination of T4 to the biologically active form 3,3’, 5-triiodo-L-thyronine, followed by the binding of T3 to a specific nuclear receptor. Before reaching the intracellular targets, thyroid hormone must cross the plasma membrane. Because of the lipophilic nature of thyroid hormone, it was thought that they traversed the plasma membrane by simple diffusion. However, in the past decade, a membrane transport system for thyroid hormone has been postulated to exist in various tissues. Several classes of transporters, organic anion transporter polypeptide (oatp) family, Na+/Taurocholate cotransporting polypeptide (ntcp) and amino acid transporters have been reported to transport thyroid hormones. Monocarboxylate transporter8 (MCT8) has recently been identified as an active and specific thyroid hormone transporter. Mutations in MCT8 are associated with severe X-linked psycomotor retardation and strongly elevated serum T3 levels in young male patients. Several other molecules should be contributed to exert the role of thyroid hormone in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Porterfield SP, Hendrich CE. The role of thyroid hormones in prenatal and neonatal neurological development-current perspectives. Endocr Rev. 1993;14:94–106.

    Article  PubMed  CAS  Google Scholar 

  2. Oppenheimer JH, Schwartz HL. Molecular basis of thyroid hormone-dependent brain development. Endocr Rev. 1997;18:462–75.

    Article  PubMed  CAS  Google Scholar 

  3. Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev. 2001;81:1097–142.

    PubMed  CAS  Google Scholar 

  4. Eayrs JT. Influence of the thyroid on the central nervous system. Br Med Bull. 1960;16:122–7.

    PubMed  CAS  Google Scholar 

  5. Thompson CC, Potter GB. Thyroid hormone action in neural development. Cerebral Cortex. 2000;10:939–45.

    Article  PubMed  CAS  Google Scholar 

  6. Balazs R, Brooksbank BW, Davison AN, Eayrs JT, Wilson DA. The effect of neonatal thyroidectomy on myelination in the rat brain. Brain Res. 1969;15:219–32.

    Article  PubMed  CAS  Google Scholar 

  7. Balazs R, Kovacs S, Cocks WA, Johnson AL, Eayrs JT. Effect of thyroid hormone on the biochemical maturation of rat brain: Postnatal cell formation. Brain Res. 1971;25:555–70.

    Article  PubMed  CAS  Google Scholar 

  8. Pardridge WM. Targeted delivery of hormones to tissues by plasma proteins. In: Conn M, editor. Handbook of physiology; Section 7: The Endocrine System, Vol. I: Cellular endocrinology. Oxford: Oxford University Press; 335–82.

  9. Southwell BR, Duan W, Alcorn D, Brack C, Richardson SJ, Kohrle J, et al. Thyroxine transport to the brain: Role of protein synthesis by the choroid plexus. Endocrinology. 1993;133:2116–26.

    Article  PubMed  CAS  Google Scholar 

  10. Chanoie JP, Akex S, Fang SL, Stone S, Leonard JL, Korhle J, et al. Role of transthyretin in the transport of thyroxine from the blood to the choroid plexus, the cerebrospinal fluid, and the brain. Endocrinology. 1992;130:933–8.

    Article  Google Scholar 

  11. Cavallaro T, Martone RL, Dwork AJ, Schon EA, Herbert J. The retinal pigment epithelium is the unique site of transthyretin synthesis in the rat eye. Invest Ophthalmol Vis Sci. 1990;31:497–501.

    PubMed  CAS  Google Scholar 

  12. Krenning E, Docter R, Bernard B, Visser T, Hennemann G. Characteristics of active transport of thyroid hormone into rat hepatocytes. Biochim Biophys Acta. 1981;676:314–20.

    PubMed  CAS  Google Scholar 

  13. Blondeau J-P, Osty J, Francon J. Characterization of the thyroid hormone transport system of isolated hepatocytes. J Biol Chem. 1988;263:2685–92.

    PubMed  CAS  Google Scholar 

  14. Topliss DJ, Kolliniatis E, Barlow JW, Lim CF, Stockigt JR. Uptake of 3,5,3’-triiodothyronine by cultured rat hepatoma cells is inhibitable by nonbile acid cholephils, diphenylhydantoin, and nonsteroidal anti-inflammatory drugs. Endocrinology. 1989;124:980–6.

    PubMed  CAS  Google Scholar 

  15. Chantoux F, Blondeau JP, Francon J. Characterization of the thyroid hormone transport system of cerebrocortical rat neurons in primary culture. J Neurochem. 1995;65:2549–54.

    Article  PubMed  CAS  Google Scholar 

  16. Gingrich SA, Smith PJ, Shapiro LE, Surks MI. 5,5’-Diphenylhydantoin (phenytoin) attenuates the action of 3,5,3’- triiodo-L-thyronine in cultured GC cells. Endocrinology. 1985;116:2306–13.

    PubMed  CAS  Google Scholar 

  17. Beslin A, Chantoux F, Blondeau J-P, Francon J. Relationship between the thyroid hormone transport system and the Na+-H+ exchanger in cultured rat brain astrocytes. Endocrinology. 1995;136:5385–90.

    Article  PubMed  CAS  Google Scholar 

  18. Francon J, Chantoux F, Blondeau JP. Carrier-mediated transport of thyroid hormones into rat glial cells in primary culture. J Neurochem. 1989;53:1456–3.

    Article  Google Scholar 

  19. Centanni M, Robbins J. Role of sodium in thyroid hormone uptake by rat skeletal muscle. J Clin Invest. 1987;80:1068–72.

    Article  PubMed  CAS  Google Scholar 

  20. Galton VA, St Germain DL, Whittemore S. Cellular uptake of 3,5,3’-triiodothyronine and thyroxine by red blood and thymus cells. Endocrinology. 1986;118:1918–23.

    Article  PubMed  CAS  Google Scholar 

  21. Osty J, Jego L, Francon J, Blondeau J-P. Characterization of triiodothyronine transport and accumulation in rat erythrocytes. Endocrinology. 1988;123:2303–11.

    PubMed  CAS  Google Scholar 

  22. Abe T, Suzuki T, Unno M, Tokui T, Ito S. Thyroid hormone transporters: Recent advances. Trends Endocrinol Metab. 2002;13:215–20.

    Article  PubMed  CAS  Google Scholar 

  23. Friesema EC, Jansen J, Milici C, Visser TJ. Thyroid hormone transporters. Vitam Horm. 2005;70:137–67.

    Article  PubMed  CAS  Google Scholar 

  24. Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ. Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev. 2001;22:451–76.

    Article  PubMed  CAS  Google Scholar 

  25. Palha JA, Fernandes R, de Escobar GM, Episkopou V, Gottesman M, Saraiva MJ, Gottesman ME, Saraiva MJ. Transthyretin regulates thyroid hormone levels in the choroid plexus, but not in the brain parenchyma: Study in a transthyretin-null mouse model. Endocrinology. 2000;141:3267–72.

    Article  PubMed  CAS  Google Scholar 

  26. Abe T, Kakyo M, Sakagami H, Tokui T, Nishio T, Tanemoto M, et al. Molecular characterization and tissue distribution of a new organic anion transporter subtype (oatp3) that transports thyroid hormones and taurocholate and comparison with oatp2. J Biol Chem. 1998;273:22395–401.

    Article  PubMed  CAS  Google Scholar 

  27. Ito A, Yamaguchi K, Onogawa T, Unno M, Suzuki T, Nishio T, et al. Distribution of organic anion transporting polypeptide2 (oatp2) and oatp3 in rat retina. Invest Ophthalmol Vis Sci. 2002;43:58–63.

    Google Scholar 

  28. Jacquemin E, Hagenbuch B, Stieger B, Wolkoff AW, Meier PJ. Expression cloning of a rat liver Na+- independent organic anion transporter. Proc Natl Acad Sci USA. 1994;91:133–7.

    Article  PubMed  CAS  Google Scholar 

  29. Friesema ECH, Doctera R, Moeringsa EPCM, Stiegerb B, Hagenbuch B, Meier PJ, et al. Identification of thyroid hormone transporters. Biochem Biophys Res Commun. 1999;254:497–501.

    Article  PubMed  CAS  Google Scholar 

  30. Angeletti RH, Novikoff PM, Juvvadi SR, Fritschy JM, Meier PJ, Wolkoff AW. The choroid plexus epithelium is the site of the organic anion transport protein in the brain. Proc Natl Acad Sci USA. 1997;94:283–6.

    Article  PubMed  CAS  Google Scholar 

  31. Gao B, Stieger B, Noé B, Fritschy JM, Meier PJ. Locaization of the organic anion transporting polypeptides 2(Oatp2) in capillary endothelium and choroids plexus epithelium of rat brain. J Histochem Cytochem. 1999;47:1255–64.

    PubMed  CAS  Google Scholar 

  32. Ohtsuki S, Takizawa T, Takanaga H, Terasaki N, Kitazawa T, Sasaki M, et al. In vitro study of functional expression organic anion transporting polypeptide 3 at rat choroid plexus epithelial cells and its involvement in the cerebrospinal fluid-to-blood transport of estrone-3-sulfate. Mol Phramacol. 2003;63:532–7.

    Article  CAS  Google Scholar 

  33. Kusuhara H, He Z, Nagata Y, Nozaki Y, Ito T, Masuda H, et al. Expression and functional involvement of organic anion transporting polypeptide subtype 3 (Slc2a7) in rat choroids plexus. Phram Res. 2003;20:720–7.

    Article  CAS  Google Scholar 

  34. Ohtsuki S, Takizawa T, Takanaga H, Hori S, Hosoya K, Terasaki T. Localization of organic anion transporting polypeptide 3(oatp3) in mouse brain parencymal and capillary endothelial cell. J Neurochem. 2004;90:743–9.

    Article  PubMed  CAS  Google Scholar 

  35. Pizzagalli F, Hagenbuch B, Stieger B, Klenk U, Folkers G, Meier PJ. Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter. Mol Endocrinol. 2002;16:2283–96.

    Article  PubMed  CAS  Google Scholar 

  36. Sugiyama D, Kusuhara H, Taniguchi H, Ishikawa S, Nozaki Y, Aburatani H, et al. Functional characterization of rat brain-specific organic anion Transporter (Oatp14) at the blood-brain barrier: High affinity transporter for thyroxine. J Biol Chem. 2003;278:43489–95.

    Article  PubMed  CAS  Google Scholar 

  37. Tohyama K, Kusuhara H, Sugiyama Y. Involvement of mutispecific organic anion transporter, Oatp14 (Slc21a14), in the transport of thyroxine across the blood-brain barrier. Endocrinology. 2004;145:4384–91.

    Article  PubMed  CAS  Google Scholar 

  38. Bronger H, Konig J, Kopplow K, Steiner H-H, Ahmadi R, Herold-Mende C, et al. ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood-tumor barrier. Cancer Res. 2005;65:11419–28.

    Article  PubMed  CAS  Google Scholar 

  39. Fujiwara K, Adachi H, Nishio T, Unno M, Tokui T, Okabe M, et al. Identification of thyroid hormone transporters in humans: Different molecules are involved in a tissuespecific manner. Endocrinology. 2001;142:2005–12.

    Article  PubMed  CAS  Google Scholar 

  40. Abe T, Kakyo M, Tokui T, Nakagomi R, Nishio T, Nakai D, et al. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J Biol Chem. 1999;274:17159–63.

    Article  PubMed  CAS  Google Scholar 

  41. Suzuki T, Onogawa T, Asano N, Mizutamari H, Mikkaichi T, Tanemoto M. Identification and characterization of novel rat and human gonad-specific organic anion transporters. Mol Endocrinol. 2003;17:1203–15.

    Article  PubMed  CAS  Google Scholar 

  42. Mikkaichi T, Suzuki T, Onogawa T, Tanemoto M, Mizutamari H, Okada M, et al. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci USA. 2004;101:3569–74.

    Article  PubMed  CAS  Google Scholar 

  43. Hsiang B, Zhu Y, Wang Z, Wu Y, Sasseville V, Yang W-P, et al. A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J Biol Chem. 1999;274:37161–8.

    Article  PubMed  CAS  Google Scholar 

  44. König J, Cui Y, Nies AT, Keppler D. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol. 2000;278:G156–64.

    Google Scholar 

  45. Tamai I, Nezuc J-I, Uchinob H, Saib Y, Okuc A, ShimaneM, et al. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem Biophys Res Commun. 2000;273:251–60.

    Article  PubMed  CAS  Google Scholar 

  46. Abe T, Unno M, Onogawa T, Tokui T, Kondo N, Nakagomi R, et al. LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology. 2001;120:1689–99.

    Article  PubMed  CAS  Google Scholar 

  47. Konig J, Cui Y, Nies AT, Keppler D. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J Biol Chem. 2000;275:23161–8.

    Article  PubMed  CAS  Google Scholar 

  48. Meier PJ, Stieger B. Bile salt transporters. Annu Rev Physiol. 2002;64:635–61.

    Article  PubMed  CAS  Google Scholar 

  49. Albert A, Keating FR. The role of the gastrointestinal tract, including the liver, in the metabolism of radiothyroxine. Endocrinology. 1952;51:427–43.

    PubMed  CAS  Google Scholar 

  50. DiStefano JJ III, Nguyen TT, Yen Y-M. Sites and patterns of absorption of 3,5,3’-triiodothyronine and thyroxine along rat small and large intestines. Endocrinology. 1992;131:275–80.

    Article  PubMed  CAS  Google Scholar 

  51. Lee WS, Berry MJ, Hediger MA, Larsen PR. The type 1 iodothyronine 5’-deiodinase messenger ribonucleic acid is localized to the S3 segment of the rat kidney proximal tubule. Endocrinology. 1993;132:2136–40.

    Article  PubMed  CAS  Google Scholar 

  52. Halestrap1 AP, Meredith D. The SLC16 gene family: from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch. 2004;447:619–28.

    Article  PubMed  CAS  Google Scholar 

  53. Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem. 2003;278:40128–35.

    Article  PubMed  CAS  Google Scholar 

  54. Heuer H, Maier MK, Iden S, Mittag J, Friesema EC, Visser TJ, et al. The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology. 2005;146:1701–6.

    Article  PubMed  CAS  Google Scholar 

  55. Friesema EC, Grueters A, Biebermann H, Krude H, von Moers A, Reeser M, et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet. 2004;364:1435–7.

    Article  PubMed  CAS  Google Scholar 

  56. Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet. 2004;74:168–75.

    Article  PubMed  CAS  Google Scholar 

  57. Jansen J, Friesema EC, Milici C, Visser TJ. Thyroid hormone transporters in health and disease. Thyroid. 2005;15:757–68.

    Article  PubMed  CAS  Google Scholar 

  58. Friesema EC, Jansen J, Heuer H, Trajkovic M, Bauer K, Visser TJ. Mechanisms of disease: Psychomotor retardation and high T3 levels caused by mutations in monocarboxylate transporter 8. Nat Clin Pract Endocrinol Metab. 2006;2:512–23.

    Article  PubMed  CAS  Google Scholar 

  59. Alkemade A, Friesema EC, Unmehopa UA, Fabriek BO, Kuiper GG, Leonard JL, et al. Neuroanatomical pathway for thyroid hormone feed back in the human hypothalamus. J Clin Enodocinol Metab. 2005;90:4322–34.

    Article  CAS  Google Scholar 

  60. Alkemade A, Friesema EC, Kuioer GG, Wiersinga WM, Swaab DF, Visser TJ, et al. Novel neuroanatomical pathways for thyroid hormone action in the human anterior pituitary. Eur J Endocrinol. 2006;154:491–500.

    Article  PubMed  CAS  Google Scholar 

  61. Guandano-Ferraz A, Obregon MJ, Germain DLS, Bernal J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci USA. 1997;94:10391–6.

    Article  Google Scholar 

  62. Dumitrescu AM, Liao X-H, Weiss RE, Millen K, Refetoff S. Tissue-specific thyroid hormone deprivation and excess in monocarboxylate transporter (Mct) 8-deficient mice. Endocrinology. 2006;147:4036–43.

    Article  PubMed  CAS  Google Scholar 

  63. Trajkovic M, Visser TJ, Mittag J, Horn S, Lukas J, Darras VM, et al. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J Clin Invest. 2007;117:627–35.

    Article  PubMed  CAS  Google Scholar 

  64. Malandro MS, Kilberg MS. Molecular biology of mammalian amino acid transporters. Annu Rev Biochem. 1996;65:305–36.

    Article  PubMed  CAS  Google Scholar 

  65. Haynes BF, Hemler ME, Mann DL, Eisenbarth GS, Shelhamer J, Mostowski HS, et al. Characterization of a monoclonal antibody (4F2) that binds to human monocytes and to a subset of activated lymphocytes. J Immunol. 1981;126:409–14.

    Google Scholar 

  66. Mastroberardino L, Spindler B, Pfeiffer R, Skelly PJ, Loffing J, Shoemaker CB, et al. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature. 1998;95:288–91.

    Google Scholar 

  67. Wells RG, Lee W-S, Kanai Y, Leiden JM, Hediger MA. The 4F2 antigen heavy chain induces uptake of neutral and dibasic amino acids in Xenopus oocytes. J Biol Chem. 1992;267:15285–88.

    PubMed  CAS  Google Scholar 

  68. Friesema ECH, Docter R, Moerings EPCM, Verrey F, Krenning EP, Hennemann G, et al. Thyroid hormone transport by the heteromeric human system L amino acid transporter. Endocrinology. 2001;142:4339–48.

    Article  PubMed  CAS  Google Scholar 

  69. Blondeau JP, Beslin A, Chantoux F, Francon J. Triiodothyronine is a high-affinity inhibitor of amino acid transport system L1 in cultured astrocytes. J Neurochem. 1993;60:1407–13.

    Article  PubMed  CAS  Google Scholar 

  70. Hagenbuch B, Stieger B, Foguet M, Lubbert H, Meier PJ. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci USA. 1991;88:10629–33.

    Article  PubMed  CAS  Google Scholar 

  71. Hagenbuch B, Dawson P. The sodium bile salt cotransport family SLC10. Pflugers Arch. 2004;447:566–70.

    Article  PubMed  CAS  Google Scholar 

  72. Refetoff S, Weiss RE, Usala SJ. The syndromes of resistance to thyroid hormone. Endocr Rev. 1993;14:348–99.

    Article  PubMed  CAS  Google Scholar 

  73. Yen PM. Molecular basis of resistance to thyroid hormone. Trends Endocrinol Meatb. 2003;14:327–33.

    Article  CAS  Google Scholar 

  74. Lu R, Kanai N, Shuster VL. Cloning in vitro expression, and tissue distribution of a human prostaglandin transporter cDNA (hPGT). J Clin Invest. 1996;98:1142–9.

    Article  PubMed  CAS  Google Scholar 

  75. Kullak-Ublick GA, Hagenbuch B, Stieger B, Schteingart CD, Hofmann AF, Wolkoff AW, et al. Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterology. 1995;109:1274–82.

    Article  PubMed  CAS  Google Scholar 

  76. Adachi H, Suzuki T, Abe M, Asano N, Mizutamari H, Tanemoto M, et al. Molecular characterization of human and rat organic anion transporter OATP-D. Am J Physiol. 2003;285:F1188–97.

    CAS  Google Scholar 

  77. Kanai N, Lu R, Satriano JA, Bao Y, Wolkoff AW, Schuster VL. Identification and characterization of a prostaglandin transporter. Science. 1995;268:866–9.

    Article  PubMed  CAS  Google Scholar 

  78. Saito H, Masuda S, Inui KI, Saito H, et al. Cloning and functional characterization of a novel rat organic anion transporter mediating basolateral uptake of methotrexate in the kidney. J Biol Chem. 1996;271:20719–25.

    Article  PubMed  CAS  Google Scholar 

  79. Masuda S, Ibaramoto K, Takeuchi A, Saito H, Hashimoto Y, Inui K, et al. Cloning and functional characterization of a new multispecific organic anion transporter, OAT-K2, in rat kidney. Mol Pharmacol. 1999;55:743–52.

    PubMed  CAS  Google Scholar 

  80. Noé B, Hagenbuch B, Stieger B, Meier PJ. Isolation of a multispecific organic anion and cardiac glycoside transporter from rat. Proc Natl Acad Sci USA. 1997;94:10346–50.

    Article  PubMed  Google Scholar 

  81. Kakyo M, Unno M, Tokui T, Nakagomi R, Nishio T, Iwasashi H, et al. Molecular characterization and functional regulation of a novel rat liver-specific organic anion transporter rlst-1. Gastroenterology. 1999;117:770–5.

    Article  PubMed  CAS  Google Scholar 

  82. Cattori V, Hagenbucha B, Hagenbucha N, Stiegera B, Hac R, Winterhalterb KE, et al. Identification of organic anion transporting polypeptide 4 (Oatp4) as a major full-length isoform of the liver-specific transporter-1 (rlst-1) in rat liver. FEBS Lett. 2000;474:242–5.

    Article  PubMed  CAS  Google Scholar 

  83. Nishio T, Adachi F, Nakagomi R, Tokui T, Sato E, Tanemoto M, Fujiwara K, at al, Molecular identification of a rat novel organic anion transporter moat1, which transports prostaglandin D(2), leukotriene C(4), and taurocholate. Biochem Biophys Res Commun. 2000;275:831–8.

    Article  PubMed  CAS  Google Scholar 

  84. Choudhuri S, Ogura K, Klaassen CD. Cloning, expression, and ontogeny of mouse organic anion-transporting polypeptide-5, a kidney-specific organic anion transporter. Biochem Biophys Res Commun. 2001;280:92–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaaki Abe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, T., Abe, T. Thyroid hormone transporters in the brain. Cerebellum 7, 75–83 (2008). https://doi.org/10.1007/s12311-008-0029-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0029-9

Key words

Navigation