Skip to main content

Advertisement

Log in

Magnetic resonance imaging in spinocerebellar ataxias

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Magnetic resonance (MR) imaging is widely used to visualize atrophic processes that occur during the pathogenesis of spinocerebellar ataxias (SCAs). T1-weighted images are utilized to rate the atrophy of cerebellar vermis, cerebellar hemispheres, pons and midbrain. Signal changes in the basal ganglia and ponto-cerebellar fibers are evaluated by T2-weighted and proton density-weighted images. However, two-dimensional (2D) images do not allow a reliable quantification of the degree of atrophy. The latter is now possible through the application of three-dimensional (3D) true volumetric methods, which should be used for research purposes. Ideally, these methods should allow automated segmentation of contrast-defined boundaries by using region growing algorithms, which can be applied successfully in structures of the posterior fossa and basal ganglia. Thin slice thickness helps to minimize partial volume effects. Whereas volumetric approaches rely on predetermined anatomical boundaries, voxel-based morphometry has been developed to determine group differences between different types of SCA (cross-sectional studies) or within one SCA entity (longitudinal studies). We will review recent results and how these methods are currently used to (i) separate sporadic and dominantly inherited forms of cerebellar ataxias; (ii) identify specific SCA genotypes; (iii) correlate patho-anatomical changes with SCA disease symptoms or severity; and (iv) visualize and estimate the rate of progression in SCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schulz JB, Klockgether T, Petersen D, Jauch M, Müller-Schauenburg W, Spieker S, Voigt K, Dichgans J. Multiple system atrophy: Natural history, MRI morphology, and dopamine receptor imaging with 123IBZM-SPECT. J Neurol Neurosurg Psychiatry. 1994;57:1047–56.

    PubMed  CAS  Google Scholar 

  2. Schrag A, Good CD, Miszkiel K, Morris HR, Mathias CJ, Lees AJ, Quinn NP. Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology. 2000;54:697–702.

    PubMed  CAS  Google Scholar 

  3. Payami H, Nutt J, Gancher S, Bird T, McNeal MG, Seltzer WK, Hussey J, Lockhart P, Gwinn-Hardy K, Singleton AA, Singleton AB, Hardy J, Farrer M. SCA2 may present as levodopa-responsive parkinsonism. Mov Disord. 2003;18:425–9.

    Article  PubMed  Google Scholar 

  4. Loy CT, Sweeney MG, Davis MB, Wills AJ, Sawle GV, Lees AJ, Tabrizi SJ. Spinocerebellar ataxia type 17: Extension of phenotype with putaminal rim hyperintensity on magnetic resonance imaging. Mov Disord. 2005;20:1521–3.

    Article  PubMed  Google Scholar 

  5. Imon Y, Katayama S, Kawakami H, Murata Y, Oka M, Nakamura S. A necropsied case of Machado-Joseph disease with a hyperintense signal of transverse pontine fibres on long TR sequences of magnetic resonance images. J Neurol Neurosurg Psychiatry. 1998;64:140–1.

    PubMed  CAS  Google Scholar 

  6. Burk K, Skalej M, Dichgans J. Pontine MRI hyperintensities (‘the cross sign’) are not pathognomonic for multiple system atrophy (MSA). Mov Disord. 2001;16:535.

    Article  PubMed  CAS  Google Scholar 

  7. Murata Y, Yamaguchi S, Kawakami H, Imon Y, Maruyama H, Sakai T, Kazuta T, Ohtake T, Nishimura M, Saida T, Chiba S, Oh-i T, Nakamura S. Characteristic magnetic resonance imaging findings in Machado-Joseph disease. Arch Neurol. 1998;55:33–7.

    Article  PubMed  CAS  Google Scholar 

  8. Luft AR, Skalej M, Welte D, Kolb R, Bürk K, Schulz JB, Klockgether T, Voigt K. A semi-automated, three dimensional technique allowing quantification of cerebellar volume and its substructure using MRI. Magn Reson Med. 1998;40:143–51.

    Article  PubMed  CAS  Google Scholar 

  9. Luft AR, Skalej M, Welte D, Kolb R. Reliability and exactness of MRI-based volumetry: A phantom study. J Magn Reson Imag. 1996;6:700–04.

    Article  CAS  Google Scholar 

  10. Klockgether T, Skalej M, Wedekind D, Luft A, Welte D, Schulz J, Abele M, Bürk K, Laccone F, Brice A, Dichgans J. Autosomal dominant cerebellar ataxia type I: MRI-based volumetry of posterior fossa structures and basal ganglia in SCA1, SCA2, and SCA3. Brain. 1998;121:1687–93.

    Article  PubMed  Google Scholar 

  11. Schulz JB, Skalej M, Wedekind D, Luft AR, Abele M, Voigt K, Dichgans J, Klockgether T. MRI-based volumetry differentiates idiopathic Parkinson’s syndrome from MSA and PSP. Ann Neurol. 1999;45:65–74.

    Article  PubMed  CAS  Google Scholar 

  12. Hauser TK, Luft A, Skalej M, Nagele T, Kircher TT, Leube DT, Schulz JB. Visualization and quantification of disease progression in multiple system atrophy. Mov Disord. 2006;21:1674–81.

    Article  PubMed  Google Scholar 

  13. Seppi K, Schocke MF, Esterhammer R, Kremser C, Brenneis C, Mueller J, Boesch S, Jaschke W, Poewe W, Wenning GK. Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the parkinson variant of multiple system atrophy. Neurology. 2003;60:922–7.

    Article  PubMed  CAS  Google Scholar 

  14. Schocke MF, Seppi K, Esterhammer R, Kremser C, Jaschke W, Poewe W, Wenning GK. Diffusion-weighted MRI differentiates the Parkinson variant of multiple system atrophy from PD. Neurology. 2002;58:575–80.

    PubMed  CAS  Google Scholar 

  15. Paviour DC, Thornton JS, Lees AJ, Jager HR. Diffusionweighted magnetic resonance imaging differentiates Parkinsonian variant of multiple-system atrophy from progressive supranuclear palsy. Mov Disord. 2007;22:68–74.

    Article  PubMed  Google Scholar 

  16. Nicoletti G, Lodi R, Condino F, Tonon C, Fera F, Malucelli E, Manners D, Zappia M, Morgante L, Barone P, Barbiroli B, Quattrone A. Apparent diffusion coefficient measurements of the middle cerebellar peduncle differentiate the Parkinson variant of MSA from Parkinson’s disease and progressive supranuclear palsy. Brain. 2006;129:2679–87.

    Article  PubMed  Google Scholar 

  17. Guerrini L, Lolli F, Ginestroni A, Belli G, Della Nave R, Tessa C, Foresti S, Cosottini M, Piacentini S, Salvi F, Plasmati R, De Grandis D, Siciliano G, Filla A, Mascalchi M. Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2. A quantitative volumetric, diffusion and proton spectroscopy MR study. Brain. 2004;127:1785–95.

    Article  PubMed  CAS  Google Scholar 

  18. Brenneis C, Bosch SM, Schocke M, Wenning GK, Poewe W. Atrophy pattern in SCA2 determined by voxel-based morphometry. Neuroreport. 2003;14:1799–802.

    Article  PubMed  Google Scholar 

  19. Lukas C, Schols L, Bellenberg B, Rub U, Przuntek H, Schmid G, Koster O, Suchan B. Dissociation of grey and white matter reduction in spinocerebellar ataxia type 3 and 6: A voxel-based morphometry study. Neurosci Lett. 2006;408:230–5.

    Article  PubMed  CAS  Google Scholar 

  20. Lasek K, Lencer R, Gaser C, Hagenah J, Walter U, Wolters A, Kock N, Steinlechner S, Nagel M, Zuhlke C, Nitschke MF, Brockmann K, Klein C, Rolfs A, Binkofski F. Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain. 2006;129:2341–52.

    Article  PubMed  CAS  Google Scholar 

  21. Schols L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.

    Article  PubMed  Google Scholar 

  22. Burk K, Abele M, Fetter M, Dichgans J, Skalej M, Laccone F, Didierjean O, Brice A, Klockgether T. Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996;119 (Pt 5):1497–505.

    Article  PubMed  Google Scholar 

  23. Adachi M, Kawanami T, Ohshima H, Hosoya T. Characteristic signal changes in the pontine base on T2- and multishot diffusion-weighted images in spinocerebellar ataxia type 1. Neuroradiology. 2006;48:8–13.

    Article  PubMed  CAS  Google Scholar 

  24. Shan DE, Soong BW, Sun CM, Lee SJ, Liao KK, Liu RS. Spinocerebellar ataxia type 2 presenting as familial levodoparesponsive parkinsonism. Ann Neurol. 2001;50:812–15.

    Article  PubMed  CAS  Google Scholar 

  25. Ying SH, Choi SI, Perlman SL, Baloh RW, Zee DS, Toga AW. Pontine and cerebellar atrophy correlate with clinical disability in SCA2. Neurology. 2006;66:424–6.

    Article  PubMed  CAS  Google Scholar 

  26. Giuffrida S, Saponara R, Restivo DA, Trovato Salinaro A, Tomarchio L, Pugliares P, Fabbri G, Maccagnano C. Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of 20 patients. J Neurol. 1999;246:383–8.

    Article  PubMed  CAS  Google Scholar 

  27. Hellenbroich Y, Bubel S, Pawlack H, Opitz S, Vieregge P, Schwinger E, Zuhlke C. Refinement of the spinocerebellar ataxia type 4 locus in a large German family and exclusion of CAG repeat expansions in this region. J Neurol. 2003;250:668–71.

    Article  PubMed  CAS  Google Scholar 

  28. Hellenbroich Y, Gierga K, Reusche E, Schwinger E, Deller T, de Vos RA, Zuhlke C, Rub U. Spinocerebellar ataxia type 4 (SCA4): Initial pathoanatomical study reveals widespread cerebellar and brainstem degeneration. J Neural Transmiss (Vienna, Austria). 2006;113:829–43.

    Article  CAS  Google Scholar 

  29. Burk K, Zuhlke C, Konig IR, Ziegler A, Schwinger E, Globas C, Dichgans J, Hellenbroich Y. Spinocerebellar ataxia type 5: Clinical and molecular genetic features of a German kindred. Neurology. 2004;62:327–9.

    PubMed  CAS  Google Scholar 

  30. Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, Stevanin G, Durr A, Zuhlke C, Burk K, Clark HB, Brice A, Rothstein JD, Schut LJ, Day JW, Ranum LP. Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet. 2006;38:184–90.

    Article  PubMed  CAS  Google Scholar 

  31. Stevanin G, Herman A, Brice A, Durr A. Clinical and MRI findings in spinocerebellar ataxia type 5. Neurology. 1999;53:1355–7.

    PubMed  CAS  Google Scholar 

  32. Schols L, Kruger R, Amoiridis G, Przuntek H, Epplen JT, Riess O. Spinocerebellar ataxia type 6: genotype and phenotype in German kindreds. J Neurol Neurosurg Psychiatry. 1998;64:67–73.

    Article  PubMed  CAS  Google Scholar 

  33. Satoh JI, Tokumoto H, Yukitake M, Matsui M, Matsuyama Z, Kawakami H, Nakamura S, Kuroda Y. Spinocerebellar ataxia type 6: MRI of three Japanese patients. Neuroradiology. 1998;40:222–7.

    Article  PubMed  CAS  Google Scholar 

  34. Butteriss D, Chinnery P, Birchall D. Radiological characterization of spinocerebellar ataxia type 6. Br J Radiol. 2005;78:694–6.

    Article  PubMed  CAS  Google Scholar 

  35. Murata Y, Kawakami H, Yamaguchi S, Nishimura M, Kohriyama T, Ishizaki F, Matsuyama Z, Mimori Y, Nakamura S. Characteristic magnetic resonance imaging findings in spinocerebellar ataxia 6. Arch Neurol. 1998;55:1348–52.

    Article  PubMed  CAS  Google Scholar 

  36. Nakagawa N, Katayama T, Makita Y, Kuroda K, Aizawa H, Kikuchi K. A case of spinocerebellar ataxia type 6 mimicking olivopontocerebellar atrophy. Neuroradiology. 1999;41:501–03.

    Article  PubMed  CAS  Google Scholar 

  37. Bang OY, Lee PH, Kim SY, Kim HJ, Huh K. Pontine atrophy precedes cerebellar degeneration in spinocerebellar ataxia 7: MRI-based volumetric analysis. J Neurol Neurosurg Psychiatry. 2004;75:1452–6.

    Article  PubMed  CAS  Google Scholar 

  38. Schols L, Bauer I, Zuhlke C, Schulte T, Kolmel C, Burk K, Topka H, Bauer P, Przuntek H, Riess O. Do CTG expansions at the SCA8 locus cause ataxia? Ann Neurol. 2003;54:110–15.

    Article  PubMed  CAS  Google Scholar 

  39. Ikeda Y, Shizuka M, Watanabe M, Okamoto K, Shoji M. Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan. Neurology. 2000;54:950–5.

    Article  PubMed  CAS  Google Scholar 

  40. Rasmussen A, Matsuura T, Ruano L, Yescas P, Ochoa A, Ashizawa T, Alonso E. Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol. 2001;50:234–9.

    Article  PubMed  CAS  Google Scholar 

  41. Worth PF, Giunti P, Gardner-Thorpe C, Dixon PH, Davis MB, Wood NW. Autosomal dominant cerebellar ataxia type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3. Am J Hum Gen. 1999;65:420–6.

    Article  CAS  Google Scholar 

  42. O’Hearn E, Holmes SE, Calvert PC, Ross CA, Margolis RL. SCA-12: Tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion. Neurology. 2001;56:299–303.

    PubMed  CAS  Google Scholar 

  43. Stevanin G, Durr A, Benammar N, Brice A. Spinocerebellar ataxia with mental retardation (SCA13). Cerebellum. 2005;4:43–6.

    Article  PubMed  CAS  Google Scholar 

  44. Klebe S, Durr A, Rentschler A, Hahn-Barma V, Abele M, Bouslam N, Schols L, Jedynak P, Forlani S, Denis E, Dussert C, Agid Y, Bauer P, Globas C, Wullner U, Brice A, Riess O, Stevanin G. New mutations in protein kinase Cgamma associated with spinocerebellar ataxia type 14. Ann Neurol. 2005;58:720–9.

    Article  PubMed  CAS  Google Scholar 

  45. van de Warrenburg BP, Verbeek DS, Piersma SJ, Hennekam FA, Pearson PL, Knoers NV, Kremer HP, Sinke RJ. Identification of a novel SCA14 mutation in a Dutch autosomal dominant cerebellar ataxia family. Neurology. 2003;61:1760–5.

    PubMed  Google Scholar 

  46. Knight MA, Gardner RJ, Bahlo M, Matsuura T, Dixon JA, Forrest SM, Storey E. Dominantly inherited ataxia and dysphonia with dentate calcification: Spinocerebellar ataxia type 20. Brain. 2004;127:1172–81.

    Article  PubMed  Google Scholar 

  47. Miyoshi Y, Yamada T, Tanimura M, Taniwaki T, Arakawa K, Ohyagi Y, Furuya H, Yamamoto K, Sakai K, Sasazuki T, Kira J. A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology. 2001;57:96–100.

    PubMed  CAS  Google Scholar 

  48. Toyoshima Y, Yamada M, Onodera O, Shimohata M, Inenaga C, Fujita N, Morita M, Tsuji S, Takahashi H. SCA17 homozygote showing Huntington’s disease-like phenotype. Ann Neurol. 2004;55:281–6.

    Article  PubMed  CAS  Google Scholar 

  49. Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, Schols L, Riess O. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol. 2003;54:367–75.

    Article  PubMed  Google Scholar 

  50. Minnerop M, Joe A, Lutz M, Bauer P, Urbach H, Helmstaedter C, Reinhardt M, Klockgether T, Wullner U. Putamen dopamine transporter and glucose metabolism are reduced in SCA17. Ann Neurol. 2005;58:490–1.

    Article  PubMed  CAS  Google Scholar 

  51. Gunther P, Storch A, Schwarz J, Sabri O, Steinbach P, Wagner A, Hesse S. Basal ganglia involvement of a patient with SCA 17 – a new form of autosomal dominant spinocerebellar ataxia. J Neurol. 2004;251:896–7.

    Article  PubMed  CAS  Google Scholar 

  52. Brkanac Z, Fernandez M, Matsushita M, Lipe H, Wolff J, Bird TD, Raskind WH. Autosomal dominant sensory/motor neuropathy with Ataxia (SMNA): Linkage to chromosome 7q22-q32. Am J Med Genetics. 2002;114:450–7.

    Article  Google Scholar 

  53. Schelhaas HJ, Verbeek DS, Van de Warrenburg BP, Sinke RJ. SCA19 and SCA22: Evidence for one locus with a worldwide distribution. Brain. 2004;127:E6; author reply E7.

    Article  PubMed  Google Scholar 

  54. Schelhaas HJ, van de Warrenburg BP. Clinical, psychological, and genetic characteristics of spinocerebellar ataxia type 19 (SCA19). Cerebellum. 2005;4:51–4.

    Article  PubMed  CAS  Google Scholar 

  55. Chung MY, Lu YC, Cheng NC, Soong BW. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain. 2003;126:1293–9.

    Article  PubMed  Google Scholar 

  56. Devos D, Schraen-Maschke S, Vuillaume I, Dujardin K, Naze P, Willoteaux C, Destee A, Sablonniere B. Clinical features and genetic analysis of a new form of spinocerebellar ataxia. Neurology. 2001;56:234–8.

    PubMed  CAS  Google Scholar 

  57. Verbeek DS, van de Warrenburg BP, Wesseling P, Pearson PL, Kremer HP, Sinke RJ. Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13-12.3. Brain. 2004;127:2551–7.

    Article  PubMed  CAS  Google Scholar 

  58. Stevanin G, Bouslam N, Thobois S, Azzedine H, Ravaux L, Boland A, Schalling M, Broussolle E, Durr A, Brice A. Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol. 2004;55:97–104.

    Article  PubMed  CAS  Google Scholar 

  59. Yu GY, Howell MJ, Roller MJ, Xie TD, Gomez CM. Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol. 2005;57:349–54.

    Article  PubMed  CAS  Google Scholar 

  60. van Swieten JC, Brusse E, de Graaf BM, Krieger E, van de Graaf R, de Koning I, Maat-Kievit A, Leegwater P, Dooijes D, Oostra BA, Heutink P. A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia (corrected). Am J Hum Genet. 2003;72:191–9.

    Article  PubMed  Google Scholar 

  61. Cagnoli C, Mariotti C, Taroni F, Seri M, Brussino A, Michielotto C, Grisoli M, Di Bella D, Migone N, Gellera C, Di Donato S, Brusco A. SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain. 2006;129:235–42.

    Article  PubMed  Google Scholar 

  62. Onodera O, Idezuka J, Igarashi S, Takiyama Y, Endo K, Takano H, Oyake M, Tanaka H, Inuzuka T, Hayashi T, Yuasa T, Ito J, Miyatake T, Tsuji S. Progressive atrophy of cerebellum and brainstem as a function of age and the size of the expanded CAG repeats in the MJD1 gene in Machado-Joseph disease. Ann Neurol. 1998;43:288–96.

    Article  PubMed  CAS  Google Scholar 

  63. Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS, Kremer B, Mariotti C, Melegh B, Pandolfo M, Rakowicz M, Ribai P, Rola R, Schols L, Szymanski S, van de Warrenburg BP, Durr A, Klockgether T, Fancellu R. Scale for the assessment and rating of ataxia: Development of a new clinical scale. Neurology. 2006;66:1717–20.

    Article  PubMed  CAS  Google Scholar 

  64. Schmitz-Hubsch T, Tezenas du Montcel S, Baliko L, Boesch S, Bonato S, Fancellu R, Giunti P, Globas C, Kang JS, Kremer B, Mariotti C, Melegh B, Rakowicz M, Rola R, Romano S, Schols L, Szymanski S, van de Warrenburg BP, Zdzienicka E, Durr A, Klockgether T. Reliability and validity of the International Cooperative Ataxia Rating Scale: A study in 156 spinocerebellar ataxia patients. Mov Disord. 2006;21:699–704.

    Article  PubMed  Google Scholar 

  65. Gröschel K, Kastrup A, Litvan I, Schulz JB. Penguins and hummingbirds: Midbrain atrophy in progressive supranuclear palsy. Neurology. 2006;66:949–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg B. Schulz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Döhlinger, S., Hauser, TK., Borkert, J. et al. Magnetic resonance imaging in spinocerebellar ataxias. Cerebellum 7, 204–214 (2008). https://doi.org/10.1007/s12311-008-0025-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0025-0

Key words

Navigation