Skip to main content

Advertisement

Log in

SCA3: Neurological features, pathogenesis and animal models

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The most frequent subtype of autosomal dominant inherited spinocerebellar ataxias is caused by CAG repeat expansions of more than 55 units in the ataxin-3 gene. The clinical variability of the phenotype depends on the length of the expanded repeat and the age at onset (and thus indirectly with the repeat size). Anticipation of the phenotype is most frequently associated with repeat expansions in paternal transmission. In this review we describe four clinical subphenotypes and correlate them to the respective repeat expansions. We also provide a detailed description of the neuropathological features. Finally, we discuss the current knowledge on the function of normal and dysfunction of altered ataxin-3 and how this translates to the predicted structure of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schöls L, Vieira-Saecker AM, Schöls S, Przuntek H, Epplen JT, Riess O. Trinucleotide expansion within the MJD1 gene presents clinically as spinocerebellar ataxia and occurs most frequently in German SCA patients. Hum Mol Genet. 1995;4:1001–5.

    Article  PubMed  Google Scholar 

  2. Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.

    Article  PubMed  Google Scholar 

  3. Takiyama Y, Nishizawa M, Tanaka H, Kawashima S, Sakamoto H, Karube Y, et al. The gene for Machado-Joseph disease maps to human chromosome 14q. Nat Genet. 1993;4:300–04.

    Article  PubMed  CAS  Google Scholar 

  4. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet. 1994;8:221–8.

    Article  PubMed  CAS  Google Scholar 

  5. Paulson H. Spinocerebellar ataxia type 3 (SCA3). www. geneclinics.org. 2003.

  6. Padiath QS, Srivastava AK, Roy S, Jain S, Brahmachari SK. Identification of a novel 45 repeat unstable allele associated with a disease phenotype at the MJD1/SCA3 locus. Am J Med Genet B Neuropsychiatr Genet. 2005;133:124–6.

    PubMed  Google Scholar 

  7. Dürr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, Didierjean O, et al. Spinocerebellar ataxia 3 and Machado-Joseph disease: Clinical, molecular, and neuropathological features. Ann Neurol. 1996;39:490–9.

    Article  PubMed  Google Scholar 

  8. Matilla T, McCall A, Subramony SH, Zoghbi HY. Molecular and clinical correlations in spinocerebellar ataxia type 3 and Machado-Joseph disease. Ann Neurol. 1995;38:68–72.

    Article  PubMed  CAS  Google Scholar 

  9. Haberhausen G, Damian MS, Leweke F, Muller U. Spinocerebellar ataxia, type 3 (SCA3) is genetically identical to Machado-Joseph disease (MJD). J Neurol Sci. 1995;132:71–5.

    Article  PubMed  CAS  Google Scholar 

  10. Schöls L, Amoiridis G, Langkafel M, Büttner T, Przuntek H, Riess O, et al. Machado-Joseph disease mutations as the genetic basis of most spinocerebellar ataxias in Germany. J Neurol Neurosurg Psychiatry. 1995;59:449–50.

    PubMed  Google Scholar 

  11. Brinkman RR, Mezei MM, Theilmann J, Almqvist E, Hayden MR. The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. Am J Hum Genet. 1997;60:1202–10.

    PubMed  CAS  Google Scholar 

  12. Stevanin G, Cancel G, Didierjean O, Dürr A, Abbas N, Cassa E, et al. Linkage disequilibrium at the Machado-Joseph disease/spinal cerebellar ataxia 3 locus: Evidence for a common founder effect in French and Portuguese–Brazilian families as well as a second ancestral Portuguese–Azorean mutation. Am J Hum Genet. 1995;57:1247–50.

    PubMed  CAS  Google Scholar 

  13. Iughetti P, Zatz M, Bueno MR, Marie SK. Different origins of mutations at the Machado-Joseph locus (MJD1). J Med Genet. 1996;33:439.

    PubMed  CAS  Google Scholar 

  14. Gaspar C, Lopes-Cendes I, Hayes S, Goto J, Arvidsson K, Dias A, et al. Ancestral origins of the Machado-Joseph disease mutation: a worldwide haplotype study. Am J Hum Genet. 2001;68:523–8.

    Article  PubMed  CAS  Google Scholar 

  15. Abele M, Bürk K, Schöls L, Schwartz S, Besenthal I, Dichgans J, et al. The aetiology of sporadic adult-onset ataxia. Brain. 2002;125:961–8.

    Article  PubMed  CAS  Google Scholar 

  16. Schöls L, Szymanski S, Peters S, Przuntek H, Epplen JT, Hardt C, et al. Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum Genet. 2000;107:132–7.

    Article  PubMed  Google Scholar 

  17. Takiyama Y, Sakoe K, Nakano I, Nishizawa M. Machado-Joseph disease: cerebellar ataxia and autonomic dysfunction in a patient with the shortest known expanded allele (56 CAG repeat units) of the MJD1 gene. Neurology. 1997;49:604–6.

    PubMed  CAS  Google Scholar 

  18. Ikeuchi T, Igarashi S, Takiyama Y, Onodera O, Oyake M, Takano H, et al. Non-Mendelian transmission in dentatorubral-pallidoluysian atrophy and Machado-Joseph disease: the mutant allele is preferentially transmitted in male meiosis. Am J Hum Genet. 1996;58:730–3.

    PubMed  CAS  Google Scholar 

  19. Riess O, Epplen JT, Amoiridis G, Przuntek H, Schöls L. Transmission distortion of the mutant alleles in spinocerebellar ataxia. Hum Genet. 1997;99:282–4.

    Article  PubMed  CAS  Google Scholar 

  20. Nakano KK, Dawson DM, Spence A. Machado disease. A hereditary ataxia in Portuguese emigrants to Massachusetts. Neurology. 1972;22:49–55.

    PubMed  CAS  Google Scholar 

  21. Rosenberg RN, Nyhan WL, Bay C, Shore P. Autosomal dominant striatonigral degeneration. A clinical, pathologic, and biochemical study of a new genetic disorder. Neurology. 1976;26:703–14.

    PubMed  CAS  Google Scholar 

  22. Lima L, Coutinho P. Clinical criteria for diagnosis of Machado-Joseph disease: Report of a non-Azorena Portuguese family. Neurology. 1980;30:319–22.

    Article  PubMed  CAS  Google Scholar 

  23. Maruyama H, Nakamura S, Matsuyama Z, Sakai T, Doyu M, Sobue G, et al. Molecular features of the CAG repeats and clinical manifestation of Machado-Joseph disease. Hum Mol Genet. 1995;4:807–12.

    Article  PubMed  CAS  Google Scholar 

  24. Takiyama Y, Igarashi S, Rogaeva EA, Endo K, Rogaev EI, Tanaka H, et al. Evidence for inter-generational instability in the CAG repeat in the MJD1 gene and for conserved haplotypes at flanking markers amongst Japanese and Caucasian subjects with Machado-Joseph disease. Hum Mol Genet. 1995;4:1137–46.

    Article  PubMed  CAS  Google Scholar 

  25. Matsumura R, Takayanagi T, Murata K, Futamura N, Hirano M, Ueno S. Relationship of (CAG)nC configuration to repeat instability of the Machado-Joseph disease gene. Hum Genet. 1996;98:643–5.

    Article  PubMed  CAS  Google Scholar 

  26. Igarashi S, Takiyama Y, Cancel G, Rogaeva EA, Sasaki H, Wakisaka A, et al. Intergenerational instability of the CAG repeat of the gene for Machado-Joseph disease (MJD1) is affected by the genotype of the normal chromosome: Implications for the molecular mechanisms of the instability of the CAG repeat. Hum Mol Genet. 1996;5:923–32.

    Article  PubMed  CAS  Google Scholar 

  27. Limprasert P, Nouri N, Heyman RA, Nopparatana C, Kamonsilp M, Deininger PL, et al. Analysis of CAG repeat of the Machado-Joseph gene in human, chimpanzee and monkey populations: A variant nucleotide is associated with the number of CAG repeats. Hum Mol Genet. 1996;5:207–13.

    Article  PubMed  CAS  Google Scholar 

  28. Telenius H, Kremer B, Goldberg YP, Theilmann J, Andrew SE, Zeisler J, et al. Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nat Genet. 1994;6:409–14.

    Article  PubMed  CAS  Google Scholar 

  29. Ueno S, Kondoh K, Kotani Y, Komure O, Kuno S, Kawai J, et al. Somatic mosaicism of CAG repeat in dentatorubralpallidoluysian atrophy (DRPLA). Hum Mol Genet. 1995;4:663–6.

    Article  PubMed  CAS  Google Scholar 

  30. Chong SS, McCall AE, Cota J, Subramony SH, Orr HT, Hughes MR, et al. Gametic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1995;10:344–50.

    Article  PubMed  CAS  Google Scholar 

  31. Lopes-Cendes I, Maciel P, Kish S, Gaspar C, Robitaille Y, Clark HB, et al. Somatic mosaicism in the central nervous system in spinocerebellar ataxia type 1 and Machado-Joseph disease. Ann Neurol. 1996;40:199–206.

    Article  PubMed  CAS  Google Scholar 

  32. Hashida H, Goto J, Kurisaki H, Mizusawa H, Kanazawa I. Brain regional differences in the expansion of a CAG repeat in the spinocerebellar ataxias: Dentatorubral-pallidoluysian atrophy, Machado-Joseph disease, and spinocerebellar ataxia type 1. Ann Neurol. 1997;41:505–11.

    Article  PubMed  CAS  Google Scholar 

  33. Dürr A, Stevanin G, Cancel G, Abbas N, Chneiweiss H, Agid Y, et al. Gender equality in Machado-Joseph disease. Nat Genet. 1995;11:118–9.

    Article  PubMed  Google Scholar 

  34. DeStefano AL, Farrer LA, Maciel P, Gaspar C, Rouleau GA, Coutinho P, et al. Gender equality in Machado-Joseph disease. Nat Genet. 1995;11:118–9.

    Article  PubMed  CAS  Google Scholar 

  35. DeStefano AL, Cupples LA, Maciel P, Gaspar C, Radvany J, Dawson DM, et al. A familial factor independent of CAG repeat length influences age at onset of Machado-Joseph disease. Am J Hum Genet. 1996;59:119–27.

    PubMed  CAS  Google Scholar 

  36. Lang AE, Rogaeva EA, Tsuda T, Hutterer J, George-Hyslop P. Homozygous inheritance of the Machado-Joseph disease gene. Ann Neurol. 1994;36:443–7.

    Article  PubMed  CAS  Google Scholar 

  37. Rosenberg RN. Machado-Joseph disease: An autosomal dominant motor system degeneration. Mov Disord. 1992;7:193–203.

    Article  PubMed  CAS  Google Scholar 

  38. Coutinho P, Andrade C. Autosomal dominant system degeneration in Portuguese families of the Azores Islands. A new genetic disorder involving cerebellar, pyramidal, extrapyramidal and spinal cord motor functions. Neurology. 1978;28:703–9.

    PubMed  CAS  Google Scholar 

  39. Schöls L, Amoiridis G, Epplen JT, Langkafel M, Przuntek H, Riess O. Relations between genotype and phenotype in German patients with the Machado-Joseph disease mutation. J Neurol Neurosurg Psychiatry. 1996;61:466–70.

    PubMed  Google Scholar 

  40. Schöls L, Haan J, Riess O, Amoiridis G, Przuntek H. Sleep disturbance in spinocerebellar ataxias: Is the SCA3 mutation a cause of restless legs syndrome? Neurology. 1998;51:1603–7.

    PubMed  Google Scholar 

  41. Sequeiros J, Coutinho P. Epidemiology and clinical aspects of Machado-Joseph disease. In: Harding AE, Deufel T, editors. Advances in Neurology. New York: Raven Press; 1993. pp. 139–53.

    Google Scholar 

  42. Bürk K, Globas C, Bösch S, Klockgether T, Zühlke C, Daum I, et al. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol. 2003;250:207–11.

    Article  PubMed  Google Scholar 

  43. Klockgether T, Skalej M, Wedekind D, Luft AR, Welte D, Schulz JB, et al. Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain. 1998;121:1687–93.

    Article  PubMed  Google Scholar 

  44. Soong BW, Liu RS. Positron emission tomography in asymptomatic gene carriers of Machado-Joseph disease. J Neurol Neurosurg Psychiatry. 1998;64:499–504.

    PubMed  CAS  Google Scholar 

  45. Takiyama Y, Oyanagi S, Kawashima S, Sakamoto H, Saito K, Yoshida M, et al. A clinical and pathologic study of a large Japanese family with Machado-Joseph disease tightly linked to the DNA markers on chromosome 14q. Neurology. 1994;44:1302–8.

    PubMed  CAS  Google Scholar 

  46. Wüllner U, Reimold M, Abele M, Bürk K, Minnerop M, Dohmen BM, et al. Dopamine transporter positron emission tomography in spinocerebellar ataxias type 1, 2, 3, and 6. Arch Neurol. 2005;62:1280–5.

    Article  PubMed  Google Scholar 

  47. van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC, Scheffer H, Brunt ER, Ippel PF, et al. Spinocerebellar ataxias in the Netherlands: Prevalence and age at onset variance analysis. Neurology. 2002;58:702–8.

    PubMed  Google Scholar 

  48. Maciel P, Gaspar C, DeStefano AL, Silveira I, Coutinho P, Radvany J, et al. Correlation between CAG repeat length and clinical features in Machado-Joseph disease. Am J Hum Genet. 1995;57:54–61.

    PubMed  CAS  Google Scholar 

  49. Schöls L, Amoiridis G, Buttner T, Przuntek H, Epplen JT, Riess O. Autosomal dominant cerebellar ataxia: Phenotypic differences in genetically defined subtypes? Ann Neurol. 1997;42:924–32.

    Article  PubMed  Google Scholar 

  50. Klockgether T, Kramer B, Ludtke R, Schöls L, Laccone F. Repeat length and disease progression in spinocerebellar ataxia type 3. Lancet. 1996;348:830.

    Article  PubMed  CAS  Google Scholar 

  51. Klockgether T, Ludtke R, Kramer B, Abele M, Bürk K, Schöls L, et al. The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain. 1998;121:589–600.

    Article  PubMed  Google Scholar 

  52. Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: Development of a new clinical scale. Neurology. 2006;66:717–20.

    Article  Google Scholar 

  53. Woods BT, Schaumburg HH. Nigro-spino-dentatal degeneration with nuclear ophthalmoplegia. A unique and partially treatable clinico-pathological entity. J Neurol Sci. 1972;17:149–66.

    Article  PubMed  CAS  Google Scholar 

  54. Buhmann C, Bussopulos A, Oechsner M. Dopaminergic response in Parkinsonian phenotype of Machado-Joseph disease. Mov Disord. 2003;18:219–21.

    Article  PubMed  Google Scholar 

  55. Tuite PJ, Rogaeva EA, George-Hyslop PH, Lang AE. Doparesponsive parkinsonism phenotype of Machado-Joseph disease: Confirmation of 14q CAG expansion. Ann Neurol. 1995;38:684–7.

    Article  PubMed  CAS  Google Scholar 

  56. Kanai K, Kuwabara S, Arai K, Sung JY, Ogawara K, Hattori T. Muscle cramp in Machado-Joseph disease: Altered motor axonal excitability properties and mexiletine treatment. Brain. 2003;126:965–73.

    Article  PubMed  Google Scholar 

  57. Ikeda H, Yamaguchi M, Sugai S, Aze Y, Narumiya S, Kakizuka A. Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nat Genet. 1996;13:196–202.

    Article  PubMed  CAS  Google Scholar 

  58. Schmidt T, Lindenberg KS, Krebs A, Schöls L, Laccone F, Herms J, et al. Protein surveillance machinery in brains with spinocerebellar ataxia type 3: Redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions. Ann Neurol. 2002;51:302–10.

    Article  PubMed  CAS  Google Scholar 

  59. Cemal CK, Carroll CJ, Lawrence L, Lowrie MB, Ruddle P, Al Mahdawi S, et al. YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit. Hum Mol Genet. 2002;11:1075–94.

    Article  PubMed  CAS  Google Scholar 

  60. Goti D, Katzen SM, Mez J, Kurtis N, Kiluk J, Ben Haiem L, et al. A mutant ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration. J Neurosci. 2004;24:10266–79.

    Article  PubMed  CAS  Google Scholar 

  61. Chai Y, Koppenhafer SL, Shoesmith SJ, Perez MK, Paulson HL. Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Hum Mol Genet. 1999;8:673–82.

    Article  PubMed  CAS  Google Scholar 

  62. Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, Strippel N, et al. Cellular toxicity of polyglutamine expansion proteins: Mechanism of transcription factor deactivation. Mol Cell. 2004;15:95–105.

    Article  PubMed  CAS  Google Scholar 

  63. Rüb U, de Vos RA, Brunt ER, Sebesteny T, Schöls L, Auburger G, et al. Spinocerebellar ataxia type 3 (SCA3): thalamic neurodegeneration occurs independently from thalamic ataxin-3 immunopositive neuronal intranuclear inclusions. Brain Pathol. 2006;16:218–27.

    Article  PubMed  Google Scholar 

  64. Rüb U, Brunt ER, Del Turco D, de Vos RA, Gierga K, Paulson H, et al. Guidelines for the pathoanatomical examination of the lower brain stem in ingestive and swallowing disorders and its application to a dysphagic spinocerebellar ataxia type 3 patient. Neuropathol Appl Neurobiol. 2003;29:1–13.

    Article  PubMed  Google Scholar 

  65. Iwabuchi K, Tsuchiya K, Uchihara T, Yagishita S. Autosomal dominant spinocerebellar degenerations. Clinical, pathological, and genetic correlations. Rev.Neurol (Paris). 1999;155:255–70.

    CAS  Google Scholar 

  66. Rüb U, Brunt ER, Petrasch-Parwez E, Schöls L, Theegarten D, Auburger G, et al. Degeneration of ingestion-related brainstem nuclei in spinocerebellar ataxia type 2, 3, 6 and 7. Neuropathol Appl Neurobiol. 2006;32:635–49.

    Article  PubMed  Google Scholar 

  67. Rüb U, Seidel K, Ozerden I, Gierga K, Brunt ER, Schöls L, et al. Consistent affection of the central somatosensory system in spinocerebellar ataxia type 2 and type 3 and its significance for clinical symptoms and rehabilitative therapy. Brain Res Rev. 2007;53:235–49.

    Article  PubMed  CAS  Google Scholar 

  68. Rüb U, Gierga K, Brunt ER, de Vos RA, Bauer M, Schöls L, et al. Spinocerebellar ataxias types 2 and 3: Degeneration of the pre-cerebellar nuclei isolates the three phylogenetically defined regions of the cerebellum. J Neural Transm. 2005;112:1523–45.

    Article  PubMed  Google Scholar 

  69. Rüb U, Brunt ER, de Vos RA, Del Turco D, Del Tredici K, Gierga K, et al. Degeneration of the central vestibular system in spinocerebellar ataxia type 3 (SCA3) patients and its possible clinical significance. Neuropathol Appl Neurobiol. 2004;30:402–14.

    Article  PubMed  Google Scholar 

  70. Rüb U, Del Turco D, Del Tredici K, de Vos RA, Brunt ER, Reifenberger G, et al. Thalamic involvement in a spinocerebellar ataxia type 2 (SCA2) and a spinocerebellar ataxia type 3 (SCA3) patient, and its clinical relevance. Brain. 2003;126:2257–72.

    Article  PubMed  Google Scholar 

  71. Rüb U, Brunt ER, Gierga K, Schultz C, Paulson H, de Vos RA, et al. The nucleus raphe interpositus in spinocerebellar ataxia type 3 (Machado-Joseph disease). J Chem Neuroanat. 2003;25:115–27.

    Article  PubMed  CAS  Google Scholar 

  72. Rüb U, Brunt ER, Gierga K, Seidel K, Schultz C, Schöls L, et al. Spinocerebellar ataxia type 7 (SCA7): First report of a systematic neuropathological study of the brain of a patient with a very short expanded CAG-repeat. Brain Pathol. 2005;15:287–95.

    Article  PubMed  Google Scholar 

  73. Gierga K, Bürk K, Bauer M, Orozco DG, Auburger G, Schultz C, et al. Involvement of the cranial nerves and their nuclei in spinocerebellar ataxia type 2 (SCA2). Acta Neuropathol. 2005;109:617–31.

    Article  PubMed  CAS  Google Scholar 

  74. Rüb U, Del Turco D, Burk K, Diaz GO, Auburger G, Mittelbronn M, et al. Extended pathoanatomical studies point to a consistent affection of the thalamus in spinocerebellar ataxia type 2. Neuropathol Appl Neurobiol. 2005;31:127–40.

    Article  PubMed  Google Scholar 

  75. Gilman S. The spinocerebellar ataxias. Clin Neuropharmacol. 2000;23:296–303.

    Article  PubMed  CAS  Google Scholar 

  76. Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH, Das SS, et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron. 1997;19:333–44.

    Article  PubMed  CAS  Google Scholar 

  77. Yamada M, Tan CF, Inenaga C, Tsuji S, Takahashi H. Sharing of polyglutamine localization by the neuronal nucleus and cytoplasm in CAG-repeat diseases. Neuropathol Appl Neurobiol. 2004;30:665–75.

    Article  PubMed  CAS  Google Scholar 

  78. Ichikawa Y, Goto J, Hattori M, Toyoda A, Ishii K, Jeong SY, et al. The genomic structure and expression of MJD, the Machado-Joseph disease gene. J Hum Genet. 2001;46:413–22.

    Article  PubMed  CAS  Google Scholar 

  79. Schmidt T, Landwehrmeyer GB, Schmitt I, Trottier Y, Auburger G, Laccone F, et al. An isoform of ataxin-3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients. Brain Pathol. 1998;8:669–79.

    Article  PubMed  CAS  Google Scholar 

  80. Nishiyama K, Murayama S, Goto J, Watanabe M, Hashida H, Katayama S, et al. Regional and cellular expression of the Machado-Joseph disease gene in brains of normal and affected individuals. Ann Neurol. 1996;40:776–81.

    Article  PubMed  CAS  Google Scholar 

  81. Wang Q, Li L, Ye Y. Regulation of retrotranslocation by p97-associated deubiquitinating enzyme ataxin-3. J Cell Biol. 2006;174:963–71.

    Article  PubMed  CAS  Google Scholar 

  82. Hofmann K, Falquet L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci. 2001;26:347–50.

    Article  PubMed  CAS  Google Scholar 

  83. Burnett B, Li F, Pittman RN. The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Genet. 2003;12:3195–205.

    Article  PubMed  CAS  Google Scholar 

  84. Chai Y, Berke SS, Cohen RE, Paulson HL. Poly-ubiquitin binding by the polyglutamine disease protein ataxin-3 links its normal function to protein surveillance pathways. J Biol Chem. 2004;279:3605–11.

    Article  PubMed  CAS  Google Scholar 

  85. Wang G, Sawai N, Kotliarova S, Kanazawa I, Nukina N. Ataxin-3, the MJD1 gene product, interacts with the two human homologs of yeast DNA repair protein RAD23, HHR23A and HHR23B. Hum Mol Genet. 2000;9:1795–803.

    Article  PubMed  CAS  Google Scholar 

  86. Doss-Pepe EW, Stenroos ES, Johnson WG, Madura K. Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol Cell Biol. 2003;23:6469–83.

    Article  PubMed  CAS  Google Scholar 

  87. Ryu KS, Lee KJ, Bae SH, Kim BK, Kim KA, Choi BS. Binding surface mapping of intra- and interdomain interactions among hHR23B, ubiquitin, and polyubiquitin binding site 2 of S5a. J Biol Chem. 2003;278:36621–7.

    Article  PubMed  CAS  Google Scholar 

  88. Hiyama H, Yokoi M, Masutani C, Sugasawa K, Maekawa T, Tanaka K, et al. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J Biol Chem. 1999;274:28019–25.

    Article  PubMed  CAS  Google Scholar 

  89. Boeddrich A, Gaumer S, Haacke A, Tzvetkov N, Albrecht M, Evert BO, et al. An arginine/lysine-rich motif is crucial for VCP/p97-mediated modulation of ataxin-3 fibrillogenesis. EMBO J. 2006;25:1547–58.

    Article  PubMed  CAS  Google Scholar 

  90. Hirabayashi M, Inoue K, Tanaka K, Nakadate K, Ohsawa Y, Kamei Y, et al. VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration. Cell Death Differ. 2001;8:977–84.

    Article  PubMed  CAS  Google Scholar 

  91. Higashiyama H, Hirose F, Yamaguchi M, Inoue YH, Fujikake N, Matsukage A, et al. Identification of ter94, Drosophila VCP, as a modulator of polyglutamine-induced neurodegeneration. Cell Death Differ. 2002;9:264–73.

    Article  PubMed  CAS  Google Scholar 

  92. Berke SJ, Chai Y, Marrs GL, Wen H, Paulson HL. Defining the role of ubiquitin-interacting motifs in the polyglutamine disease protein, ataxin-3. J Biol Chem. 2005;280:32026–34.

    Article  PubMed  CAS  Google Scholar 

  93. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605–8.

    Article  PubMed  CAS  Google Scholar 

  94. Tsai YC, Fishman PS, Thakor NV, Oyler GA. Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. J Biol Chem. 2003;278:22044–55.

    Article  PubMed  CAS  Google Scholar 

  95. Matsumoto M, Yada M, Hatakeyama S, Ishimoto H, Tanimura T, Tsuji S, et al. Molecular clearance of ataxin-3 is regulated by a mammalian E4. EMBO J. 2004;23:659–69.

    Article  PubMed  CAS  Google Scholar 

  96. Mao Y, Senic-Matuglia F, Di Fiore PP, Polo S, Hodsdon ME, De Camilli P. Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain. Proc Natl Acad Sci USA. 2005;102:12700–5.

    Article  PubMed  CAS  Google Scholar 

  97. Riley BE, Xu Y, Zoghbi HY, Orr HT. The effects of the polyglutamine repeat protein ataxin-1 on the UbL-UBA protein A1Up. J Biol Chem. 2004;279:42290–301.

    Article  PubMed  CAS  Google Scholar 

  98. Li F, Macfarlan T, Pittman RN, Chakravarti D. Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities. J Biol Chem. 2002;277:45004–12.

    Article  PubMed  CAS  Google Scholar 

  99. Albrecht M, Hoffmann D, Evert BO, Schmitt I, Wüllner U, Lengauer T. Structural modeling of ataxin-3 reveals distant homology to adaptins. Proteins. 2003;50:355–70.

    Article  PubMed  CAS  Google Scholar 

  100. Masino L, Musi V, Menon RP, Fusi P, Kelly G, Frenkiel TA, et al. Domain architecture of the polyglutamine protein ataxin-3: A globular domain followed by a flexible tail. FEBS Lett. 2003;549:21–5.

    Article  PubMed  CAS  Google Scholar 

  101. Masino L, Kelly G, Leonard K, Trottier Y, Pastore A. Solution structure of polyglutamine tracts in GST-polyglutamine fusion proteins. FEBS Lett. 2002;513:267–72.

    Article  PubMed  CAS  Google Scholar 

  102. Altschuler EL, Hud NV, Mazrimas JA, Rupp B. Random coil conformation for extended polyglutamine stretches in aqueous soluble monomeric peptides. J Pept Res. 1997;50:73–5.

    Article  PubMed  CAS  Google Scholar 

  103. Chen S, Berthelier V, Yang W, Wetzel R. Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J Mol Biol. 2001;311:173–82.

    Article  PubMed  CAS  Google Scholar 

  104. Bevivino AE, Loll PJ. An expanded glutamine repeat destabilizes native ataxin-3 structure and mediates formation of parallel beta-fibrils. Proc Natl Acad Sci USA. 2001;98:11955–60.

    Article  PubMed  CAS  Google Scholar 

  105. Bennett MJ, Huey-Tubman KE, Herr AB, West AP, Jr., Ross SA, Bjorkman PJ. Inaugural Article: A linear lattice model for polyglutamine in CAG-expansion diseases. Proc Natl Acad Sci USA. 2002;99:11634–9.

    Article  PubMed  CAS  Google Scholar 

  106. Nicastro G, Menon RP, Masino L, Knowles PP, McDonald NQ, Pastore A. The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Proc Natl Acad Sci USA. 2005;102:10493–8.

    Article  PubMed  CAS  Google Scholar 

  107. Nicastro G, Habeck M, Masino L, Svergun DI, Pastore A. Structure validation of the Josephin domain of ataxin-3: Conclusive evidence for an open conformation. J Biomol NMR. 2006;36:267–77.

    Article  PubMed  CAS  Google Scholar 

  108. Scheel H, Tomiuk S, Hofmann K. Elucidation of ataxin-3 and ataxin-7 function by integrative bioinformatics. Hum Mol Genet. 2003;12:2845–52.

    Article  PubMed  CAS  Google Scholar 

  109. Holm L, Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol. 1993;233:123–38.

    Article  PubMed  CAS  Google Scholar 

  110. Hofmann B, Schomburg D, Hecht HJ. Crystal structure of a thiol proteinase from staphylococcus aureus V-8 in the E-64 inhibitor complex. Acta Cryst Sect. 1993;A49:102.

    Article  Google Scholar 

  111. Zhu M, Shao F, Innes RW, Dixon JE, Xu Z. The crystal structure of Pseudomonas avirulence protein AvrPphB: A papain-like fold with a distinct substrate-binding site. Proc Natl Acad Sci USA. 2004;101:302–7.

    Article  PubMed  CAS  Google Scholar 

  112. Drenth J, Kalk KH, Swen HM. Binding of chloromethyl ketone substrate analogues to crystalline papain. Biochemistry. 1976;15:3731–8.

    Article  PubMed  CAS  Google Scholar 

  113. Johnston SC, Riddle SM, Cohen RE, Hill CP. Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J. 1999;18:3877–87.

    Article  PubMed  CAS  Google Scholar 

  114. Hu M, Li P, Li M, Li W, Yao T, Wu JW, et al. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell. 2002;111:1041–54.

    Article  PubMed  CAS  Google Scholar 

  115. Wenig K, Chatwell L, Pawel-Rammingen U, Bjorck L, Huber R, Sondermann P. Structure of the streptococcal endopeptidase IdeS, a cysteine proteinase with strict specificity for IgG. Proc Natl Acad Sci USA. 2004;101:17371–6.

    Article  PubMed  CAS  Google Scholar 

  116. Fujiwara K, Tenno T, Sugasawa K, Jee JG, Ohki I, Kojima C, et al. Structure of the ubiquitin-interacting motif of S5a bound to the ubiquitin-like domain of HR23B. J Biol Chem. 2004;279:4760–7.

    Article  PubMed  CAS  Google Scholar 

  117. Perez MK, Paulson HL, Pendse SJ, Saionz SJ, Bonini NM, Pittman RN. Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol. 1998;143:1457–70.

    Article  PubMed  CAS  Google Scholar 

  118. Berke SJ, Schmied FA, Brunt ER, Ellerby LM, Paulson HL. Caspase-mediated proteolysis of the polyglutamine disease protein ataxin-3. J Neurochem. 2004;89:908–18.

    Article  PubMed  CAS  Google Scholar 

  119. Haacke A, Broadley SA, Boteva R, Tzvetkov N, Hartl FU, Breuer P. Proteolytic cleavage of polyglutamine-expanded ataxin-3 is critical for aggregation and sequestration of nonexpanded ataxin-3. Hum Mol Genet. 2006;15:555–68.

    Article  PubMed  CAS  Google Scholar 

  120. Warrick JM, Paulson HL, Gray-Board, Bui QT, Fischbeck KH, Pittman RN, et al. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell. 1998;93:939–49.

    Article  PubMed  CAS  Google Scholar 

  121. Ghosh S, Feany MB. Comparison of pathways controlling toxicity in the eye and brain in drosophila models of human neurodegenerative diseases. Hum Mol Genet. 2004;13:2011–8.

    Article  PubMed  CAS  Google Scholar 

  122. Warrick JM, Chan HY, Gray-Board , Chai Y, Paulson HL, Bonini NM. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet. 1999;23:425–8.

    Article  PubMed  CAS  Google Scholar 

  123. Kazemi-Esfarjani P, Benzer S. Suppression of polyglutamine toxicity by a Drosophila homolog of myeloid leukemia factor 1. Hum Mol Genet. 2002;11:2657–72.

    Article  PubMed  CAS  Google Scholar 

  124. Warrick JM, Morabito LM, Bilen J, Gordesky-Gold B, Faust LZ, Paulson HL, et al. Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitinassociated mechanism. Mol Cell. 2005;18:37–48.

    Article  PubMed  CAS  Google Scholar 

  125. Chai Y, Koppenhafer SL, Bonini NM, Paulson HL. Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J Neurosci. 1999;19:10338–47.

    PubMed  CAS  Google Scholar 

  126. Kretzschmar D, Tschape J, Bettencourt DC, Asan E, Poeck B, Strauss R, et al. Glial and neuronal expression of polyglutamine proteins induce behavioral changes and aggregate formation in Drosophila. Glia. 2005;49:59–72.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Riess.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riess, O., Rüb, U., Pastore, A. et al. SCA3: Neurological features, pathogenesis and animal models. Cerebellum 7, 125–137 (2008). https://doi.org/10.1007/s12311-008-0013-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0013-4

Key words

Navigation