Skip to main content

Advertisement

Log in

Progress in transduction of cerebellar Purkinje cells in vivo using viral vectors

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Expression of a foreign gene in cerebellar Purkinje cells in vivo is a powerful method for exploring the pathophysiology of the cerebellum. Although using developmental engineering many gene-modified mice have been generated, this approach is time-consuming and requires a lot of effort for crossing different lines of mice, genotyping and maintenance of animals. If a gene of interest can be transferred to and efficiently expressed in Purkinje cells of developing and mature animals, it saves much time, effort and money. Recent advances in viral vectors have markedly contributed to selective and efficient gene transfer to Purkinje cells in vivo. There are two approaches for selective gene expression in Purkinje cells: one is to take advantage of the viral tropism for Purkinje cells, which includes the tropism of adeno-associated virus and the vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped lentivirus. Another method, which might be used in combination with the first one, is utilization of a Purkinje-cell-specific promoter. Focusing mainly on these points, recent progress in viralvector-mediated transduction of Purkinje cells in vivo is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarna JR, Hawkes R. Patterned Purkinje cell death in the cerebellum. Prog Neurobiol. 2003;70:473–507.

    PubMed  CAS  Google Scholar 

  2. Boulos S, Meloni BP, Arthur PG, Bojarski C, Knuckey NW. Assessment of CMV, RSV and SYN1 promoters and the woodchuck post-transcriptional regulatory element in adenovirus vectors for transgene expression in cortical neuronal cultures. Brain Res. 2006;1102:27–38.

    Article  PubMed  CAS  Google Scholar 

  3. Ehrengruber MU, Hennou S, Bueler H, et al. Gene transfer into neurons from hippocampal slices: comparison of recombinant Semliki Forest Virus, adenovirus, adeno-associated virus, lentivirus, and measles virus. Mol Cell Neurosci. 2001;17:855–71.

    Article  PubMed  CAS  Google Scholar 

  4. Muramatsu S, Tsukada H, Nakano I, Ozawa K. Gene therapy for Parkinson’s disease using recombinant adeno-associated viral vectors. Expert Opin Biol Ther. 2005;5:663–71.

    Article  PubMed  CAS  Google Scholar 

  5. Hashimoto M, Aruga J, Hosoya Y, et al. A neural cell-typespecific expression system using recombinant adenovirus vectors. Hum Gene Ther. 1996;7:149–58.

    Article  PubMed  CAS  Google Scholar 

  6. Terashima T, Miwa A, Kanegae Y, Saito I, Okado H. Retrograde and anterograde labeling of cerebellar afferent projection by the injection of recombinant adenoviral vectors into the mouse cerebellar cortex. Anat Embryol (Berl). 1997;196:363–82.

    Article  CAS  Google Scholar 

  7. Iino M, Goto K, Kakegawa W, et al. Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science. 2001;292:926–9.

    Article  PubMed  CAS  Google Scholar 

  8. Sato Y, Shiraishi Y, Furuichi T. Cell specificity and efficiency of the Semliki forest virus vector- and adenovirus vectormediated gene expression in mouse cerebellum. J Neurosci Methods. 2004;137:111–21.

    Article  PubMed  CAS  Google Scholar 

  9. Sodeik B, Ebersold MW, Helenius A. Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol. 1997;136:1007–21.

    Article  PubMed  CAS  Google Scholar 

  10. Topp KS, Meade LB, LaVail JH. Microtubule polarity in the peripheral processes of trigeminal ganglion cells: Relevance for the retrograde transport of herpes simplex virus. J Neurosci. 1994;14:318–25.

    PubMed  CAS  Google Scholar 

  11. Berges BK, Wolfe JH, Fraser NW. Transduction of brain by herpes simplex virus vectors. Mol Ther. 2007;15:20–9.

    Article  PubMed  CAS  Google Scholar 

  12. Neve RL, Neve KA, Nestler EJ, Carlezon WA, Jr. Use of herpes virus amplicon vectors to study brain disorders. Biotechniques. 2005;39:381–91.

    Article  PubMed  CAS  Google Scholar 

  13. Agudo M, Trejo JL, Lim F, et al. Highly efficient and specific gene transfer to Purkinje cells in vivo using a herpes simplex virus I amplicon. Hum Gene Ther. 2002;13:665–74.

    Article  PubMed  CAS  Google Scholar 

  14. Mata M, Glorioso JC, Fink DJ. Gene transfer to the nervous system: Prospects for novel treatments directed at diseases of the aging nervous system. J Gerontol A Biol Sci Med Sci. 2003;58:1111–18.

    Google Scholar 

  15. Gao G, Alvira MR, Somanathan S, et al. Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci USA. 2003;100:6081–6.

    Article  PubMed  CAS  Google Scholar 

  16. Mandel RJ, Rendahl KG, Spratt SK, et al. Characterization of intrastriatal recombinant adeno-associated virus-mediated gene transfer of human tyrosine hydroxylase and human GTP-cyclohydrolase I in a rat model of Parkinson’s disease. J Neurosci. 1998;18:4271–84.

    PubMed  CAS  Google Scholar 

  17. Bartlett JS, Samulski RJ, McCown TJ. Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum Gene Ther. 1998;9:1181–6.

    Article  PubMed  CAS  Google Scholar 

  18. Klein RL, Meyer EM, Peel AL, et al. Neuron-specific transduction in the rat septohippocampal or nigrostriatal pathway by recombinant adeno-associated virus vectors. Exp Neurol. 1998;150:183–94.

    Article  PubMed  CAS  Google Scholar 

  19. Peel AL, Zolotukhin S, Schrimsher GW, Muzyczka N, Reier PJ. Efficient transduction of green fluorescent protein in spinal cord neurons using adeno-associated virus vectors containing cell type-specific promoters. Gene Ther. 1997;4:16–24.

    Article  PubMed  CAS  Google Scholar 

  20. Burger C, Gorbatyuk OS, Velardo MJ, et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther. 2004;10:302–17.

    Article  PubMed  CAS  Google Scholar 

  21. Paterna JC, Feldon J, Bueler H. Transduction profiles of recombinant adeno-associated virus vectors derived from serotypes 2 and 5 in the nigrostriatal system of rats. J Virol. 2004;78:6808–17.

    Article  PubMed  CAS  Google Scholar 

  22. Wang C, Wang CM, Clark KR, Sferra TJ. Recombinant AAV serotype 1 transduction efficiency and tropism in the murine brain. Gene Ther. 2003;10:1528–34.

    Article  PubMed  CAS  Google Scholar 

  23. Alisky JM, Hughes SM, Sauter SL, et al. Transduction of murine cerebellar neurons with recombinant FIV and AAV5 vectors. Neuroreport. 2000;11:2669–73.

    Article  PubMed  CAS  Google Scholar 

  24. Kaemmerer WF, Reddy RG, Warlick CA, et al. In vivo transduction of cerebellar Purkinje cells using adeno-associated virus vectors. Mol Ther. 2000;2:446–57.

    Article  PubMed  CAS  Google Scholar 

  25. Xia H, Mao Q, Eliason SL, et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med. 2004;10:816–20.

    Article  PubMed  CAS  Google Scholar 

  26. Broekman ML, Comer LA, Hyman BT, Sena-Esteves M. Adeno-associated virus vectors serotyped with AAV8 capsid are more efficient than AAV-1 or -2 serotypes for widespread gene delivery to the neonatal mouse brain. Neuroscience. 2006;138:501–10.

    Article  PubMed  CAS  Google Scholar 

  27. Torashima T, Okoyama S, Nishizaki T, Hirai H. In vivo transduction of murine cerebellar Purkinje cells by HIVderived lentiviral vectors. Brain Res. 2006;1082:11–22.

    Article  PubMed  CAS  Google Scholar 

  28. Torashima T, Yamada N, Itoh M, Yamamoto A, Hirai H. Exposure of lentiviral vectors to subneutral pH shifts the tropism from Purkinje cell to Bergmann glia. Eur J Neurosci. 2006;24:371–80.

    Article  PubMed  Google Scholar 

  29. Tiscornia G, Singer O, Verma IM. Production and purification of lentiviral vectors. Nat Protocol. 2006;1:241–5.

    Article  CAS  Google Scholar 

  30. Torashima T, Koyama C, Higashida H, Hirai H. Production of neuron-preferential lentiviral vectors. Nat Protocol. 2007. DOI: 10.1038/nprot.2007.89.

  31. Jin D, Liu HX, Hirai H, et al. CD38 is critical for social behaviour by regulating oxytocin secretion. Nature. 2007;446:41–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Hirai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirai, H. Progress in transduction of cerebellar Purkinje cells in vivo using viral vectors. Cerebellum 7, 273–278 (2008). https://doi.org/10.1007/s12311-008-0012-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0012-5

Key words

Navigation