Skip to main content

Advertisement

Log in

What is new in the 5th edition of the World Health Organization classification of mature B and T/NK cell tumors and stromal neoplasms?

  • Review Article
  • Published:
Journal of Hematopathology Aims and scope Submit manuscript

Abstract

The classification of tumors is essential in the diagnosis and clinical management of patients with malignant neoplasms. The World Health Organization (WHO) provides a globally applicable classification scheme of neoplasms and it was updated several times. In this review, we briefly outline the cornerstones of the upcoming 5th edition of the World Health Organization Classification of Haematolymphoid Tumours on lymphoid neoplasms. As is adopted throughout the 5th edition of the WHO classification of tumors of all organ systems, entities are listed by a hierarchical system. For the first time, tumor-like lesions have been included in the classification, and modifications of nomenclature for some entities, revisions of diagnostic criteria or subtypes, deletion of certain entities, and introduction of new entities are presented along with mesenchymal lesions specific to the stroma of lymph nodes and the spleen. In addition to specific outlines on constitutional and somatic genetic changes associated with given entities, a separate chapter on germline predisposition syndromes related to hematologic neoplasms has been added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alaggio R, Amador C, Anagnostopoulos I et al (2022) The 5th edition of the world health organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia 36:1720–1748. https://doi.org/10.1038/s41375-022-01620-2

    Article  PubMed  PubMed Central  Google Scholar 

  2. Khoury JD, Solary E, Abla O et al (2022) The 5th edition of the world health organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 36:1703–1719. https://doi.org/10.1038/s41375-022-01613-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Giné E, Martinez A, Villamor N et al (2010) Expanded and highly active proliferation centers identify a histological subtype of chronic lymphocytic leukemia (“accelerated” chronic lymphocytic leukemia) with aggressive clinical behavior. Haematologica 95:1526–1533. https://doi.org/10.3324/haematol.2010.022277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. El Hussein S, Khoury JD, Medeiros LJ (2021) B-prolymphocytic leukemia: is it time to retire this entity? Ann Diagn Pathol 54:151790. https://doi.org/10.1016/j.anndiagpath.2021.151790

    Article  PubMed  Google Scholar 

  5. Siebert R, Schuh A, Ott G et al (2023) Response to the comments from the Groupe Francophone de Cytogénétique Hématologique (GFCH) on the 5th edition of the world health organization classification of haematolymphoid tumors. Leukemia 37:1170–1172. https://doi.org/10.1038/s41375-023-01872-6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marcus R, Davies A, Ando K et al (2017) Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J Med 377:1331–1344. https://doi.org/10.1056/NEJMoa1614598

    Article  CAS  PubMed  Google Scholar 

  7. Hiddemann W, Barbui AM, Canales MA et al (2018) Immunochemotherapy with obinutuzumab or rituximab for previously untreated follicular lymphoma in the GALLIUM study: influence of chemotherapy on efficacy and safety. J Clin Oncol 36:2395–2404. https://doi.org/10.1200/JCO.2017.76.8960

    Article  CAS  PubMed  Google Scholar 

  8. Rimsza LM, Li H, Braziel RM et al (2018) Impact of histological grading on survival in the SWOG S0016 follicular lymphoma cohort. Haematologica 103:e151–e153. https://doi.org/10.3324/haematol.2017.175059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morschhauser F, Fowler NH, Feugier P et al (2018) Rituximab plus lenalidomide in advanced untreated follicular lymphoma. N Engl J Med 379:934–947. https://doi.org/10.1056/NEJMoa1805104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bachy E, Seymour JF, Feugier P et al (2019) Sustained progression-free survival benefit of rituximab maintenance in patients with follicular lymphoma: long-term results of the PRIMA study. J Clin Oncol 37:2815–2824. https://doi.org/10.1200/JCO.19.01073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zamò A, Gerhard-Hartmann E, Ott G et al (2022) Routine application of the Lymph2Cx assay for the subclassification of aggressive B-cell lymphoma: report of a prospective real-world series. Virchows Arch 481:935–943. https://doi.org/10.1007/s00428-022-03420-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nann D, Ramis-Zaldivar JE, Müller I et al (2020) Follicular lymphoma t(14;18)-negative is genetically a heterogeneous disease. Blood Adv 4:5652–5665. https://doi.org/10.1182/bloodadvances.2020002944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmidt J, Gong S, Marafioti T et al (2016) Genome-wide analysis of pediatric-type follicular lymphoma reveals low genetic complexity and recurrent alterations of TNFRSF14 gene. Blood 128:1101–1111. https://doi.org/10.1182/blood-2016-03-703819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. El Behery R, Laurini JA, Weisenburger DD et al (2018) Follicular large cleaved cell (centrocytic) lymphoma: an unrecognized variant of follicular lymphoma. Hum Pathol 72:180–190. https://doi.org/10.1016/j.humpath.2017.11.002

    Article  PubMed  Google Scholar 

  15. Laurent C, Adélaïde J, Guille A et al (2021) High-grade follicular lymphomas exhibit clinicopathologic, cytogenetic, and molecular diversity extending beyond grades 3A and 3B. Am J Surg Pathol 45:1324–1336. https://doi.org/10.1097/PAS.0000000000001726

    Article  PubMed  Google Scholar 

  16. Li S, Young KH, Medeiros LJ (2018) Diffuse large B-cell lymphoma. Pathology 50:74–87. https://doi.org/10.1016/j.pathol.2017.09.006

    Article  PubMed  Google Scholar 

  17. Pasqualucci L, Dalla-Favera R (2018) Genetics of diffuse large B-cell lymphoma. Blood 131:2307–2319. https://doi.org/10.1182/blood-2017-11-764332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hans CP, Weisenburger DD, Greiner TC et al (2004) Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103:275–282. https://doi.org/10.1182/blood-2003-05-1545

    Article  CAS  PubMed  Google Scholar 

  19. Runge HFP, Lacy S, Barrans S et al (2021) Application of the LymphGen classification tool to 928 clinically and genetically-characterised cases of diffuse large B cell lymphoma (DLBCL). Br J Haematol 192:216–220. https://doi.org/10.1111/bjh.17132

    Article  PubMed  Google Scholar 

  20. Scott DW, Wright GW, Williams PM et al (2014) Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood 123:1214–1217. https://doi.org/10.1182/blood-2013-11-536433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chapuy B, Stewart C, Dunford AJ et al (2018) Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med 24:679–690. https://doi.org/10.1038/s41591-018-0016-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wright GW, Da Huang W, Phelan JD et al (2020) A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell 37:551-568.e14. https://doi.org/10.1016/j.ccell.2020.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salaverria I, Philipp C, Oschlies I et al (2011) Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood 118:139–147. https://doi.org/10.1182/blood-2011-01-330795

    Article  CAS  PubMed  Google Scholar 

  24. Ramis-Zaldivar JE, Gonzalez-Farré B, Balagué O et al (2020) Distinct molecular profile of IRF4-rearranged large B-cell lymphoma. Blood 135:274–286. https://doi.org/10.1182/blood.2019002699

    Article  PubMed  PubMed Central  Google Scholar 

  25. Salaverria I, Martin-Guerrero I, Wagener R et al (2014) A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood 123:1187–1198. https://doi.org/10.1182/blood-2013-06-507996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Horn H, Kalmbach S, Wagener R et al (2021) A diagnostic approach to the identification of Burkitt-like lymphoma with 11q aberration in aggressive B-cell lymphomas. Am J Surg Pathol 45:356–364. https://doi.org/10.1097/PAS.0000000000001613

    Article  PubMed  Google Scholar 

  27. Gonzalez-Farre B, Ramis-Zaldivar JE, Salmeron-Villalobos J et al (2019) Burkitt-like lymphoma with 11q aberration: a germinal center-derived lymphoma genetically unrelated to Burkitt lymphoma. Haematologica 104:1822–1829. https://doi.org/10.3324/haematol.2018.207928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wagener R, Seufert J, Raimondi F et al (2019) The mutational landscape of Burkitt-like lymphoma with 11q aberration is distinct from that of Burkitt lymphoma. Blood 133:962–966. https://doi.org/10.1182/blood-2018-07-864025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosenthal A, Younes A (2017) High grade B-cell lymphoma with rearrangements of MYC and BCL2 and/or BCL6: double hit and triple hit lymphomas and double expressing lymphoma. Blood Rev 31:37–42. https://doi.org/10.1016/j.blre.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  30. Scott DW, King RL, Staiger AM et al (2018) High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements with diffuse large B-cell lymphoma morphology. Blood 131:2060–2064. https://doi.org/10.1182/blood-2017-12-820605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Copie-Bergman C, Cuillière-Dartigues P, Baia M et al (2015) MYC-IG rearrangements are negative predictors of survival in DLBCL patients treated with immunochemotherapy: a GELA/LYSA study. Blood 126:2466–2474. https://doi.org/10.1182/blood-2015-05-647602

    Article  CAS  PubMed  Google Scholar 

  32. Rosenwald A, Bens S, Advani R et al (2019) Prognostic significance of MYC rearrangement and translocation partner in diffuse large B-cell lymphoma: a study by the Lunenburg Lymphoma Biomarker Consortium. J Clin Oncol 37:3359–3368. https://doi.org/10.1200/JCO.19.00743

    Article  CAS  PubMed  Google Scholar 

  33. Zhang C, Stelloo E, Barrans S et al (2024) Non-IG:MYC in diffuse large B-cell lymphoma confers variable genomic configurations and MYC transactivation potential. Leukemia. https://doi.org/10.1038/s41375-023-02134-1

    Article  PubMed  PubMed Central  Google Scholar 

  34. Coupland SE, Du M-Q, Ferry JA et al (2024) The fifth edition of the WHO classification of mature B-cell neoplasms: open questions for research. J Pathol 262:255–270. https://doi.org/10.1002/path.6246

    Article  PubMed  Google Scholar 

  35. Snuderl M, Kolman OK, Chen Y-B et al (2010) B-cell lymphomas with concurrent IGH-BCL2 and MYC rearrangements are aggressive neoplasms with clinical and pathologic features distinct from Burkitt lymphoma and diffuse large B-cell lymphoma. Am J Surg Pathol 34:327–340. https://doi.org/10.1097/PAS.0b013e3181cd3aeb

    Article  PubMed  PubMed Central  Google Scholar 

  36. Evrard SM, Péricart S, Grand D et al (2019) Targeted next generation sequencing reveals high mutation frequency of CREBBP, BCL2 and KMT2D in high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements. Haematologica 104:e154–e157. https://doi.org/10.3324/haematol.2018.198572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cucco F, Barrans S, Sha C et al (2020) Distinct genetic changes reveal evolutionary history and heterogeneous molecular grade of DLBCL with MYC/BCL2 double-hit. Leukemia 34:1329–1341. https://doi.org/10.1038/s41375-019-0691-6

    Article  CAS  PubMed  Google Scholar 

  38. Alexanian S, Said J, Lones M et al (2013) KSHV/HHV8-negative effusion-based lymphoma, a distinct entity associated with fluid overload states. Am J Surg Pathol 37:241–249. https://doi.org/10.1097/PAS.0b013e318267fabc

    Article  PubMed  PubMed Central  Google Scholar 

  39. Collinge B, Ben-Neriah S, Chong L et al (2021) The impact of MYC and BCL2 structural variants in tumors of DLBCL morphology and mechanisms of false-negative MYC IHC. Blood 137:2196–2208. https://doi.org/10.1182/blood.2020007193

    Article  CAS  PubMed  Google Scholar 

  40. Weniger MA, Küppers R (2021) Molecular biology of Hodgkin lymphoma. Leukemia 35:968–981. https://doi.org/10.1038/s41375-021-01204-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Piris MA, Medeiros LJ, Chang K-C (2020) Hodgkin lymphoma: a review of pathological features and recent advances in pathogenesis. Pathology 52:154–165. https://doi.org/10.1016/j.pathol.2019.09.005

    Article  CAS  PubMed  Google Scholar 

  42. Sarkozy C, Hung SS, Chavez EA et al (2021) Mutational landscape of gray zone lymphoma. Blood 137:1765–1776. https://doi.org/10.1182/blood.2020007507

    Article  CAS  PubMed  Google Scholar 

  43. Campo E, Jaffe ES (2021) Taking gray zone lymphomas out of the shadows. Blood 137:1703–1704. https://doi.org/10.1182/blood.2020009265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Traverse-Glehen A, Pittaluga S, Gaulard P et al (2005) Mediastinal gray zone lymphoma: the missing link between classic Hodgkin’s lymphoma and mediastinal large B-cell lymphoma. Am J Surg Pathol 29:1411–1421. https://doi.org/10.1097/01.pas.0000180856.74572.73

    Article  PubMed  Google Scholar 

  45. Sarkozy C, Copie-Bergman C, Damotte D et al (2019) Gray-zone lymphoma between cHL and large B-cell lymphoma: a histopathologic series from the LYSA. Am J Surg Pathol 43:341–351. https://doi.org/10.1097/PAS.0000000000001198

    Article  PubMed  Google Scholar 

  46. Pittaluga S, Nicolae A, Wright GW et al (2020) Gene expression profiling of mediastinal gray zone lymphoma and its relationship to primary mediastinal B-cell lymphoma and classical Hodgkin lymphoma. Blood Cancer Discov 1:155–161. https://doi.org/10.1158/2643-3230.BCD-20-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eberle FC, Rodriguez-Canales J, Wei L et al (2011) Methylation profiling of mediastinal gray zone lymphoma reveals a distinctive signature with elements shared by classical Hodgkin’s lymphoma and primary mediastinal large B-cell lymphoma. Haematologica 96:558–566. https://doi.org/10.3324/haematol.2010.033167

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dunleavy K, Wilson WH (2015) Primary mediastinal B-cell lymphoma and mediastinal gray zone lymphoma: do they require a unique therapeutic approach? Blood 125:33–39. https://doi.org/10.1182/blood-2014-05-575092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Steidl C (2017) Exposing Hodgkin-Reed-Sternberg cells. Blood 129:6–7. https://doi.org/10.1182/blood-2016-11-746701

    Article  PubMed  Google Scholar 

  50. Wienand K, Chapuy B, Stewart C et al (2019) Genomic analyses of flow-sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion. Blood Adv 3:4065–4080. https://doi.org/10.1182/bloodadvances.2019001012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chetaille B, Bertucci F, Finetti P et al (2009) Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood 113:2765–3775. https://doi.org/10.1182/blood-2008-07-168096

    Article  CAS  PubMed  Google Scholar 

  52. de Jong D, Roemer MGM, Chan JKC et al (2017) B-cell and classical Hodgkin lymphomas associated with immunodeficiency: 2015 SH/EAHP Workshop Report-Part 2. Am J Clin Pathol 147:153–170. https://doi.org/10.1093/ajcp/aqw216

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dojcinov SD, Venkataraman G, Raffeld M et al (2010) EBV positive mucocutaneous ulcer–a study of 26 cases associated with various sources of immunosuppression. Am J Surg Pathol 34:405–417. https://doi.org/10.1097/PAS.0b013e3181cf8622

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dojcinov SD, Venkataraman G, Pittaluga S et al (2011) Age-related EBV-associated lymphoproliferative disorders in the Western population: a spectrum of reactive lymphoid hyperplasia and lymphoma. Blood 117:4726–4735. https://doi.org/10.1182/blood-2010-12-323238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nicolae A, Pittaluga S, Venkataraman G et al (2013) Peripheral T-cell lymphomas of follicular T-helper cell derivation with Hodgkin/Reed-Sternberg cells of B-cell lineage: both EBV-positive and EBV-negative variants exist. Am J Surg Pathol 37:816–826. https://doi.org/10.1097/PAS.0b013e3182785610

    Article  PubMed  PubMed Central  Google Scholar 

  56. Campo E, Jaffe ES, Cook JR et al (2022) The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood 140:1229–1253. https://doi.org/10.1182/blood.2022015851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nam-Cha SH, Montes-Moreno S, Salcedo MT et al (2009) Lymphocyte-rich classical Hodgkin’s lymphoma: distinctive tumor and microenvironment markers. Mod Pathol 22:1006–1015. https://doi.org/10.1038/modpathol.2009.54

    Article  CAS  PubMed  Google Scholar 

  58. Hartmann S, Plütschow A, Mottok A et al (2019) The time to relapse correlates with the histopathological growth pattern in nodular lymphocyte predominant Hodgkin lymphoma. Am J Hematol 94:1208–1213. https://doi.org/10.1002/ajh.25607

    Article  PubMed  Google Scholar 

  59. Randen U, Trøen G, Tierens A et al (2014) Primary cold agglutinin-associated lymphoproliferative disease: a B-cell lymphoma of the bone marrow distinct from lymphoplasmacytic lymphoma. Haematologica 99:497–504. https://doi.org/10.3324/haematol.2013.091702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Małecka A, Trøen G, Tierens A et al (2018) Frequent somatic mutations of KMT2D (MLL2) and CARD11 genes in primary cold agglutinin disease. Br J Haematol 183:838–842. https://doi.org/10.1111/bjh.15063

    Article  CAS  PubMed  Google Scholar 

  61. Leung N, Bridoux F, Nasr SH (2021) Monoclonal gammopathy of renal significance. N Engl J Med 384:1931–1941. https://doi.org/10.1056/NEJMra1810907

    Article  CAS  PubMed  Google Scholar 

  62. Wahner-Roedler DL, Kyle RA (2005) Heavy chain diseases. Best Pract Res Clin Haematol 18:729–746. https://doi.org/10.1016/j.beha.2005.01.029

    Article  CAS  PubMed  Google Scholar 

  63. Natkunam Y, Gratzinger D, Chadburn A et al (2018) Immunodeficiency-associated lymphoproliferative disorders: time for reappraisal? Blood 132:1871–1878. https://doi.org/10.1182/blood-2018-04-842559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tangye SG, Al-Herz W, Bousfiha A et al (2022) Human inborn errors of immunity: 2022 update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 42:1473–1507. https://doi.org/10.1007/s10875-022-01289-3

    Article  PubMed  PubMed Central  Google Scholar 

  65. Morscio J, Finalet Ferreiro J, Vander Borght S et al (2017) Identification of distinct subgroups of EBV-positive post-transplant diffuse large B-cell lymphoma. Mod Pathol 30:370–381. https://doi.org/10.1038/modpathol.2016.199

    Article  CAS  PubMed  Google Scholar 

  66. Yu M, Hazelton WD, Luebeck GE et al (2020) Epigenetic aging: more than just a clock when it comes to cancer. Cancer Res 80:367–374. https://doi.org/10.1158/0008-5472.CAN-19-0924

    Article  CAS  PubMed  Google Scholar 

  67. Nicolae A, Pittaluga S, Abdullah S et al (2015) EBV-positive large B-cell lymphomas in young patients: a nodal lymphoma with evidence for a tolerogenic immune environment. Blood 126:863–872. https://doi.org/10.1182/blood-2015-02-630632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marcelis L, Berghen C, de Zutter A et al (2018) Other immunomodulatory agent-related lymphoproliferative diseases: a single-center series of 72 biopsy-confirmed cases. Mod Pathol 31:1457–1469. https://doi.org/10.1038/s41379-018-0054-2

    Article  CAS  PubMed  Google Scholar 

  69. Seidel MG, Kindle G, Gathmann B et al (2019) The European Society for Immunodeficiencies (ESID) Registry Working Definitions for the Clinical Diagnosis of Inborn Errors of Immunity. J Allergy Clin Immunol Pract 7:1763–1770. https://doi.org/10.1016/j.jaip.2019.02.004

    Article  PubMed  Google Scholar 

  70. Steinhilber J, Mederake M, Bonzheim I et al (2019) The pathological features of angioimmunoblastic T-cell lymphomas with IDH2R172 mutations. Mod Pathol 32:1123–1134. https://doi.org/10.1038/s41379-019-0254-4

    Article  CAS  PubMed  Google Scholar 

  71. de Leval L, Parrens M, Le Bras F et al (2015) Angioimmunoblastic T-cell lymphoma is the most common T-cell lymphoma in two distinct French information data sets. Haematologica 100:e361–e364. https://doi.org/10.3324/haematol.2015.126300

    Article  PubMed  PubMed Central  Google Scholar 

  72. Attygalle AD, Chuang S-S, Diss TC et al (2007) Distinguishing angioimmunoblastic T-cell lymphoma from peripheral T-cell lymphoma, unspecified, using morphology, immunophenotype and molecular genetics. Histopathology 50:498–508. https://doi.org/10.1111/j.1365-2559.2007.02632.x

    Article  CAS  PubMed  Google Scholar 

  73. Hsi ED, Said J, Macon WR et al (2014) Diagnostic accuracy of a defined immunophenotypic and molecular genetic approach for peripheral T/NK-cell lymphomas. A North American PTCL study group project. Am J Surg Pathol 38:768–775. https://doi.org/10.1097/PAS.0000000000000188

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tokunaga T, Shimada K, Yamamoto K et al (2012) Retrospective analysis of prognostic factors for angioimmunoblastic T-cell lymphoma: a multicenter cooperative study in Japan. Blood 119:2837–2843. https://doi.org/10.1182/blood-2011-08-374371

    Article  CAS  PubMed  Google Scholar 

  75. Sakata-Yanagimoto M, Enami T, Yoshida K et al (2014) Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 46:171–175. https://doi.org/10.1038/ng.2872

    Article  CAS  PubMed  Google Scholar 

  76. Wang C, McKeithan TW, Gong Q et al (2015) IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell lymphoma. Blood 126:1741–1752. https://doi.org/10.1182/blood-2015-05-644591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schwartz FH, Cai Q, Fellmann E et al (2017) TET2 mutations in B cells of patients affected by angioimmunoblastic T-cell lymphoma. J Pathol 242:129–133. https://doi.org/10.1002/path.4898

    Article  CAS  PubMed  Google Scholar 

  78. Yao W-Q, Wu F, Zhang W et al (2020) Angioimmunoblastic T-cell lymphoma contains multiple clonal T-cell populations derived from a common TET2 mutant progenitor cell. J Pathol 250:346–357. https://doi.org/10.1002/path.5376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Attygalle AD, Dobson R, Chak PK et al (2022) Parallel evolution of two distinct lymphoid proliferations in clonal haematopoiesis. Histopathology 80:847–858. https://doi.org/10.1111/his.14619

    Article  PubMed  PubMed Central  Google Scholar 

  80. Iqbal J, Wright G, Wang C et al (2014) Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood 123:2915–2923. https://doi.org/10.1182/blood-2013-11-536359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Parrilla Castellar ER, Jaffe ES, Said JW et al (2014) ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 124:1473–1480. https://doi.org/10.1182/blood-2014-04-571091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pedersen MB, Hamilton-Dutoit SJ, Bendix K et al (2017) DUSP22 and TP63 rearrangements predict outcome of ALK-negative anaplastic large cell lymphoma: a Danish cohort study. Blood 130:554–557. https://doi.org/10.1182/blood-2016-12-755496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hapgood G, Ben-Neriah S, Mottok A et al (2019) Identification of high-risk DUSP22-rearranged ALK-negative anaplastic large cell lymphoma. Br J Haematol 186:e28–e31. https://doi.org/10.1111/bjh.15860

    Article  PubMed  PubMed Central  Google Scholar 

  84. Boi M, Rinaldi A, Kwee I et al (2013) PRDM1/BLIMP1 is commonly inactivated in anaplastic large T-cell lymphoma. Blood 122:2683–2693. https://doi.org/10.1182/blood-2013-04-497933

    Article  CAS  PubMed  Google Scholar 

  85. Liang H-C, Costanza M, Prutsch N et al (2021) Super-enhancer-based identification of a BATF3/IL-2R-module reveals vulnerabilities in anaplastic large cell lymphoma. Nat Commun 12:5577. https://doi.org/10.1038/s41467-021-25379-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. King RL, Dao LN, McPhail ED et al (2016) Morphologic features of ALK-negative anaplastic large cell lymphomas with DUSP22 rearrangements. Am J Surg Pathol 40:36–43. https://doi.org/10.1097/PAS.0000000000000500

    Article  PubMed  PubMed Central  Google Scholar 

  87. Feldman AL, Oishi N, Ketterling RP et al (2022) Immunohistochemical approach to genetic subtyping of anaplastic large cell lymphoma. Am J Surg Pathol 46:1490–1499. https://doi.org/10.1097/PAS.0000000000001941

    Article  PubMed  PubMed Central  Google Scholar 

  88. Fitzpatrick MJ, Massoth LR, Marcus C et al (2021) JAK2 rearrangements are a recurrent alteration in CD30+ systemic T-cell lymphomas with anaplastic morphology. Am J Surg Pathol 45:895–904. https://doi.org/10.1097/PAS.0000000000001708

    Article  PubMed  Google Scholar 

  89. Scarfò I, Pellegrino E, Mereu E et al (2016) Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood 127:221–232. https://doi.org/10.1182/blood-2014-12-614503

    Article  CAS  PubMed  Google Scholar 

  90. Fang H, Beird HC, Wang SA et al (2023) T-prolymphocytic leukemia: TCL1 or MTCP1 rearrangement is not mandatory to establish diagnosis. Leukemia 37:1919–1921. https://doi.org/10.1038/s41375-023-01956-3

    Article  PubMed  Google Scholar 

  91. Gutierrez M, Bladek P, Goksu B et al (2023) T-cell prolymphocytic leukemia: diagnosis, pathogenesis, and treatment. Int J Mol Sci 24. https://doi.org/10.3390/ijms241512106

  92. Kawamoto K, Miyoshi H, Yanagida E et al (2017) Comparison of clinicopathological characteristics between T-cell prolymphocytic leukemia and peripheral T-cell lymphoma, not otherwise specified. Eur J Haematol 98:459–466. https://doi.org/10.1111/ejh.12856

    Article  CAS  PubMed  Google Scholar 

  93. Schrader A, Crispatzu G, Oberbeck S et al (2018) Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL. Nat Commun 9:697. https://doi.org/10.1038/s41467-017-02688-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mitteldorf C, Stadler R, Sander CA et al (2018) Folliculotropic mycosis fungoides. J Dtsch Dermatol Ges 16:543–557. https://doi.org/10.1111/ddg.13514

    Article  PubMed  Google Scholar 

  95. Kempf W, Kerl K, Mitteldorf C (2018) Cutaneous CD30-positive T-cell lymphoproliferative disorders-clinical and histopathologic features, differential diagnosis, and treatment. Semin Cutan Med Surg 37:24–29. https://doi.org/10.12788/j.sder.2018.001

    Article  PubMed  Google Scholar 

  96. Csikesz CR, Knudson RA, Greipp PT et al (2013) Primary cutaneous CD30-positive T-cell lymphoproliferative disorders with biallelic rearrangements of DUSP22. J Invest Dermatol 133:1680–1682. https://doi.org/10.1038/jid.2013.22

    Article  CAS  PubMed  Google Scholar 

  97. Vasmatzis G, Johnson SH, Knudson RA et al (2012) Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood 120:2280–2289. https://doi.org/10.1182/blood-2012-03-419937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Velusamy T, Kiel MJ, Sahasrabuddhe AA et al (2014) A novel recurrent NPM1-TYK2 gene fusion in cutaneous CD30-positive lymphoproliferative disorders. Blood 124:3768–3771. https://doi.org/10.1182/blood-2014-07-588434

    Article  CAS  PubMed  Google Scholar 

  99. Díaz La, de Pinta FJ, Rodríguez Moreno M, Salgado RN et al (2023) Anaplastic large cell lymphomas with the 6p25.3 rearrangement are a heterogeneous group of tumours with a diverse molecular background. Hum Pathol 137:71–78. https://doi.org/10.1016/j.humpath.2023.04.015

    Article  CAS  Google Scholar 

  100. Kempf W, Petrella T, Willemze R et al (2022) Clinical, histopathological and prognostic features of primary cutaneous acral CD8+ T-cell lymphoma and other dermal CD8+ cutaneous lymphoproliferations: results of an EORTC Cutaneous Lymphoma Group workshop. Br J Dermatol 186:887–897. https://doi.org/10.1111/bjd.20973

    Article  CAS  PubMed  Google Scholar 

  101. Willemze R, Cerroni L, Kempf W et al (2019) The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood 133:1703–1714. https://doi.org/10.1182/blood-2018-11-881268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kempf W, Mitteldorf C (2021) Cutaneous T-cell lymphomas-an update 2021. Hematol Oncol 39(Suppl 1):46–51. https://doi.org/10.1002/hon.2850

    Article  CAS  PubMed  Google Scholar 

  103. Swerdlow SH, Campo E, Pileri SA et al (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127:2375–2390. https://doi.org/10.1182/blood-2016-01-643569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Polprasert C, Takeuchi Y, Kakiuchi N et al (2019) Frequent germline mutations of HAVCR2 in sporadic subcutaneous panniculitis-like T-cell lymphoma. Blood Adv 3:588–595. https://doi.org/10.1182/bloodadvances.2018028340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Koh J, Jang I, Mun S et al (2021) Genetic profiles of subcutaneous panniculitis-like T-cell lymphoma and clinicopathological impact of HAVCR2 mutations. Blood Adv 5:3919–3930. https://doi.org/10.1182/bloodadvances.2021004562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Takeuchi K, Yokoyama M, Ishizawa S et al (2010) Lymphomatoid gastropathy: a distinct clinicopathologic entity of self-limited pseudomalignant NK-cell proliferation. Blood 116:5631–5637. https://doi.org/10.1182/blood-2010-06-290650

    Article  CAS  PubMed  Google Scholar 

  107. Mansoor A, Pittaluga S, Beck PL et al (2011) NK-cell enteropathy: a benign NK-cell lymphoproliferative disease mimicking intestinal lymphoma: clinicopathologic features and follow-up in a unique case series. Blood 117:1447–1452. https://doi.org/10.1182/blood-2010-08-302737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xiao W, Gupta GK, Yao J et al (2019) Recurrent somatic JAK3 mutations in NK-cell enteropathy. Blood 134:986–991. https://doi.org/10.1182/blood.2019001443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jeon YK, Kim J-H, Sung J-Y et al (2015) Epstein-Barr virus-positive nodal T/NK-cell lymphoma: an analysis of 15 cases with distinct clinicopathological features. Hum Pathol 46:981–990. https://doi.org/10.1016/j.humpath.2015.03.002

    Article  PubMed  Google Scholar 

  110. Jung KS, Cho S-H, Kim SJ et al (2016) Clinical features and treatment outcome of Epstein-Barr virus-positive nodal T-cell lymphoma. Int J Hematol 104:591–595. https://doi.org/10.1007/s12185-016-2068-1

    Article  CAS  PubMed  Google Scholar 

  111. Ng S-B, Chung T-H, Kato S et al (2018) Epstein-Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes. Haematologica 103:278–287. https://doi.org/10.3324/haematol.2017.180430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yamashita D, Shimada K, Takata K et al (2018) Reappraisal of nodal Epstein-Barr virus-negative cytotoxic T-cell lymphoma: identification of indolent CD5+ diseases. Cancer Sci 109:2599–2610. https://doi.org/10.1111/cas.13652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wai CMM, Chen S, Phyu T et al (2022) Immune pathway upregulation and lower genomic instability distinguish EBV-positive nodal T/NK-cell lymphoma from ENKTL and PTCL-NOS. Haematologica 107:1864–1879. https://doi.org/10.3324/haematol.2021.280003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Suster S, Rosai J (1989) Intranodal hemorrhagic spindle-cell tumor with “amianthoid” fibers. Report of six cases of a distinctive mesenchymal neoplasm of the inguinal region that simulates Kaposi’s sarcoma. Am J Surg Pathol 13:347–357

    Article  CAS  PubMed  Google Scholar 

  115. Weiss SW, Gnepp DR, Bratthauer GL (1989) Palisaded myofibroblastoma. A benign mesenchymal tumor of lymph node. Am J Surg Pathol 13:341–346

    Article  CAS  PubMed  Google Scholar 

  116. Laskin WB, Lasota JP, Fetsch JF et al (2015) Intranodal palisaded myofibroblastoma: another mesenchymal neoplasm with CTNNB1 (β-catenin gene) mutations: clinicopathologic, immunohistochemical, and molecular genetic study of 18 cases. Am J Surg Pathol 39:197–205. https://doi.org/10.1097/PAS.0000000000000299

    Article  PubMed  PubMed Central  Google Scholar 

  117. Falk S, Stutte HJ, Frizzera G (1991) Littoral cell angioma. A novel splenic vascular lesion demonstrating histiocytic differentiation. Am J Surg Pathol 15:1023–1033

    Article  CAS  PubMed  Google Scholar 

  118. Bi C, Jiang L, Li Z et al (2007) Littoral cell angioma of spleen: a clinicopathologic study of 17 cases. Zhonghua Bing Li Xue Za Zhi 36:239–243

    CAS  PubMed  Google Scholar 

  119. Peckova K, Michal M, Hadravsky L et al (2016) Littoral cell angioma of the spleen: a study of 25 cases with confirmation of frequent association with visceral malignancies. Histopathology 69:762–774. https://doi.org/10.1111/his.13026

    Article  PubMed  Google Scholar 

  120. Ogembo JG, Milner DA, Mansfield KG et al (2012) SIRPα/CD172a and FHOD1 are unique markers of littoral cells, a recently evolved major cell population of red pulp of human spleen. J Immunol 188:4496–4505. https://doi.org/10.4049/jimmunol.1103086

    Article  CAS  PubMed  Google Scholar 

  121. Donner LR, Marcussen S, Dobin SM (2005) A clonal dic(16;21)(p13.1;p11.2)del(16)(q11.1), with gains of several chromosomes and monosomy 21, in a case of splenic hamartoma: evidence for its neoplastic, not hamartomatous, origin. Cancer Genet Cytogenet 157:160–163. https://doi.org/10.1016/j.cancergencyto.2004.08.011

    Article  CAS  PubMed  Google Scholar 

  122. Chiu A, Czader M, Cheng L et al (2011) Clonal X-chromosome inactivation suggests that splenic cord capillary hemangioma is a true neoplasm and not a subtype of splenic hamartoma. Mod Pathol 24:108–116. https://doi.org/10.1038/modpathol.2010.168

    Article  CAS  PubMed  Google Scholar 

  123. Chang K-C, Lee J-C, Wang Y-C et al (2016) Polyclonality in sclerosing angiomatoid nodular transformation of the spleen. Am J Surg Pathol 40:1343–1351. https://doi.org/10.1097/PAS.0000000000000716

    Article  PubMed  Google Scholar 

  124. Uzun S, Özcan Ö, Işık A et al (2021) Loss of CTNNB1 exon 3 in sclerosing angiomatoid nodular transformation of the spleen. Virchows Arch 479:747–754. https://doi.org/10.1007/s00428-021-03064-y

    Article  CAS  PubMed  Google Scholar 

  125. Sim J, Ahn HI, Han H et al (2013) Splenic hamartoma: a case report and review of the literature. World J Clin Cases 1:217–219. https://doi.org/10.12998/wjcc.v1.i7.217

    Article  PubMed  PubMed Central  Google Scholar 

  126. Martel M, Cheuk W, Lombardi L et al (2004) Sclerosing angiomatoid nodular transformation (SANT): report of 25 cases of a distinctive benign splenic lesion. Am J Surg Pathol 28:1268–1279. https://doi.org/10.1097/01.pas.0000138004.54274.d3

    Article  PubMed  Google Scholar 

  127. Diebold J, Le Tourneau A, Marmey B et al (2008) Is sclerosing angiomatoid nodular transformation (SANT) of the splenic red pulp identical to inflammatory pseudotumour? Report of 16 cases. Histopathology 53:299–310. https://doi.org/10.1111/j.1365-2559.2008.03101.x

    Article  CAS  PubMed  Google Scholar 

  128. Liao J, Wang Z, Li Q et al (2021) CT and MRI features of sclerosing angiomatoid nodular transformation of the spleen: a report of 18 patients with pathologic correlation. Diagn Interv Imaging 102:389–396. https://doi.org/10.1016/j.diii.2021.01.003

    Article  PubMed  Google Scholar 

  129. Cheuk W, Lee AKC, Arora N et al (2005) Splenic hamartoma with bizarre stromal cells. Am J Surg Pathol 29:109–114. https://doi.org/10.1097/01.pas.0000146026.69082.68

    Article  PubMed  Google Scholar 

  130. Laskin WB, Alasadi R, Variakojis D (2005) Splenic hamartoma. Am J Surg Pathol 29:1114–1115

    Article  PubMed  Google Scholar 

  131. Yigit N, Covey S, Tam W (2015) Massive splenic hamartoma with bizarre stromal cells. Int J Hematol 101:315–316. https://doi.org/10.1007/s12185-015-1748-6

    Article  PubMed  Google Scholar 

  132. Cheng N, Chen J, Pan Y et al (2018) Splenic hamartoma with bizarre stromal cells: a case report and literature review. Diagn Pathol 13:8. https://doi.org/10.1186/s13000-018-0687-y

    Article  PubMed  PubMed Central  Google Scholar 

  133. Zukerberg LR, Kaynor BL, Silverman ML et al (1991) Splenic hamartoma and capillary hemangioma are distinct entities: immunohistochemical analysis of CD8 expression by endothelial cells. Hum Pathol 22:1258–1261. https://doi.org/10.1016/0046-8177(91)90108-2

    Article  CAS  PubMed  Google Scholar 

  134. Ali TZ, Beyer G, Taylor M et al (2005) Splenic hamartoma: immunohistochemical and ultrastructural profile of two cases. Int J Surg Pathol 13:103–111. https://doi.org/10.1177/106689690501300116

    Article  PubMed  Google Scholar 

  135. Bofill M, Akbar AN, Amlot PL (2000) Follicular dendritic cells share a membrane-bound protein with fibroblasts. J Pathol 191:217–226. https://doi.org/10.1002/(SICI)1096-9896(200006)191:2%3c217:AID-PATH586%3e3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  136. van Nierop K, de Groot C (2002) Human follicular dendritic cells: function, origin and development. Semin Immunol 14:251–257. https://doi.org/10.1016/s1044-5323(02)00057-x

    Article  PubMed  Google Scholar 

  137. Jarjour M, Jorquera A, Mondor I et al (2014) Fate mapping reveals origin and dynamics of lymph node follicular dendritic cells. J Exp Med 211:1109–1122. https://doi.org/10.1084/jem.20132409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jiang X-N, Zhang Y, Xue T et al (2021) New clinicopathologic scenarios of EBV+ inflammatory follicular dendritic cell sarcoma: report of 9 extrahepatosplenic cases. Am J Surg Pathol 45:765–772. https://doi.org/10.1097/PAS.0000000000001632

    Article  PubMed  Google Scholar 

  139. Pan S-T, Cheng C-Y, Lee N-S et al (2014) Follicular dendritic cell sarcoma of the inflammatory pseudotumor-like variant presenting as a colonic polyp. Korean J Pathol 48:140–145. https://doi.org/10.4132/KoreanJPathol.2014.48.2.140

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ke X, He H, Zhang Q et al (2020) Epstein-Barr virus-positive inflammatory follicular dendritic cell sarcoma presenting as a solitary colonic mass: two rare cases and a literature review. Histopathology 77:832–840. https://doi.org/10.1111/his.14169

    Article  PubMed  Google Scholar 

  141. Goh L, Teo NZ, Wang LM (2020) Beware the inflammatory cell-rich colonic polyp: a rare case of EBV-positive inflammatory pseudotumour-like follicular dendritic cell sarcoma with increased IgG4-positive plasma cells. Pathology 52:713–717. https://doi.org/10.1016/j.pathol.2020.05.011

    Article  CAS  PubMed  Google Scholar 

  142. He H, Xue Q, Tan F et al (2021) A rare case of primary pulmonary inflammatory pseudotumor-like follicular dendritic cell sarcoma successfully treated by lobectomy. Ann Transl Med 9:77. https://doi.org/10.21037/atm-20-4965

    Article  PubMed  PubMed Central  Google Scholar 

  143. Cheuk W, Chan JK, Shek TW et al (2001) Inflammatory pseudotumor-like follicular dendritic cell tumor: a distinctive low-grade malignant intra-abdominal neoplasm with consistent Epstein-Barr virus association. Am J Surg Pathol 25:721–731. https://doi.org/10.1097/00000478-200106000-00003

    Article  CAS  PubMed  Google Scholar 

  144. Li X-Q, Cheuk W, Lam PWY et al (2014) Inflammatory pseudotumor-like follicular dendritic cell tumor of liver and spleen: granulomatous and eosinophil-rich variants mimicking inflammatory or infective lesions. Am J Surg Pathol 38:646–653. https://doi.org/10.1097/PAS.0000000000000170

    Article  PubMed  Google Scholar 

Download references

Funding

This study was not supported by any funding.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Judith A. Ferry or German Ott.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, informed consent is not required.

Consent for publication

For this type of study, consent for publication is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attygalle, A.D., Chan, J.K.C., Coupland, S.E. et al. What is new in the 5th edition of the World Health Organization classification of mature B and T/NK cell tumors and stromal neoplasms?. J Hematopathol (2024). https://doi.org/10.1007/s12308-024-00585-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12308-024-00585-8

Keywords

Navigation