Journal of Hematopathology

, Volume 8, Issue 4, pp 203–208 | Cite as

MicroRNA expression profiles in BCR-ABL-negative primary myelofibrosis with chromosome 7q defects

  • Angelika Stucki-Koch
  • Gesa Hauck
  • Hans Kreipe
  • Kais Hussein
Original Article

Abstract

BCR-ABL-negative primary myelofibrosis (PMF) shows non-specific karyotype abnormalities in up to 30 % of patients, e.g. chromosome 7 defects, which are associated with an adverse prognosis. The impact of chromosome 7 aberrations on cell pathobiology is not yet known. We speculated that chromosome 7q-encoded regulatory microRNA might be one possible basis of instable disease. JAK2V617F-positive cases of PMF with 7q defects (n = 4) were compared with PMF with non-7 aberrations (n = 3), PMF without karyotype aberrations (n = 3) and with a pool of three non-neoplastic controls. The microRNA expression profile of bone marrow cells was analysed with real-time PCR arrays. No 7q-related profile was found but, independent of the underlying karyotype, PMF cases show higher levels of 10q-encoded miR-146b. Re-evaluation in a second cohort (n = 50) confirmed miR-146b overexpression in fibrotic stage PMF. On the transcript level, no negative regulation of potential miR-146b targets could be found. In summary, no link between cytogenetic alterations and microRNA expression could be verified in PMF with 7q defects but 10q-encoded miR-146b overexpression was found to be associated with fibrosis.

Keywords

Primary myelofibrosis Karyotype Chromosome 7q MicroRNA, miR-146b 

Supplementary material

12308_2015_258_MOESM1_ESM.doc (134 kb)
ESM 1(DOC 134 kb)

References

  1. 1.
    Swerdlow SH, Campo C, Harris NL (eds) (2008) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC press, LyonGoogle Scholar
  2. 2.
    Hauck G, Jonigk D, Göhring G, Kreipe H, Hussein K (2013) Myelofibrosis in Philadelphia chromosome-negative myeloproliferative neoplasms is associated with aberrant karyotypes. Cancer Genet 206:116–123CrossRefPubMedGoogle Scholar
  3. 3.
    Haase D (2008) Cytogenetic features in myelodysplastic syndromes. Ann Hematol 87:515–526PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Tefferi A, Sirhan S, Sun Y, Lasho T, Finke CM, Weisberger J, Bale S, Compton J, LeDuc CA, Pardanani A, Thorland EC, Shevchenko Y, Grodman M, Chung WK (2009) Oligonucleotide array CGH studies in myeloproliferative neoplasms: comparison with JAK2V617F mutational status and conventional chromosome analysis. Leuk Res 33:662–624CrossRefPubMedGoogle Scholar
  5. 5.
    Li B, Xu J, Li C, Gale RP, Xu Z, Qin T, Zhang Y, Huang G, Fang L, Zhang H, Pan L, Hu N, Qu S, Xiao Z (2014) Cytogenetic studies and their prognostic contribution in 565 Chinese patients with primary myelofibrosis. Am J Hematol 89:1043–10436CrossRefPubMedGoogle Scholar
  6. 6.
    Guglielmelli P, Lasho TL, Rotunno G, Score J, Mannarelli C, Pancrazzi A, Biamonte F, Pardanani A, Zoi K, Reiter A, Duncombe A, Fanelli T, Pietra D, Rumi E, Finke C, Gangat N, Ketterling RP, Knudson RA, Hanson CA, Bosi A, Pereira A, Manfredini R, Cervantes F, Barosi G, Cazzola M, Cross NC, Vannucchi AM, Tefferi A (2014) The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia 28:1804–1810CrossRefPubMedGoogle Scholar
  7. 7.
    Christiansen DH, Andersen MK, Pedersen-Bjergaard J (2003) Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 17:1813–1819.Google Scholar
  8. 8.
    Christiansen DH, Andersen MK, Pedersen-Bjergaard J (2004) Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromosome arm 7q and with subsequent leukemic transformation. Blood 104:1474–1481CrossRefPubMedGoogle Scholar
  9. 9.
    Jäger R, Gisslinger H, Passamonti F, Rumi E, Berg T, Gisslinger B, Pietra D, Harutyunyan A, Klampfl T, Olcaydu D, Cazzola M, Kralovics R (2010) Deletions of the transcription factor ikaros in myeloproliferative neoplasms. Leukemia 24:1290–1298CrossRefPubMedGoogle Scholar
  10. 10.
    Hussein K (2012) Pathobiology of the microRNA system. Pathologe 33:70–78CrossRefPubMedGoogle Scholar
  11. 11.
    Rhyasen GW, Starczynowski DT (2012) Deregulation of microRNAs in myelodysplastic syndrome. Leukemia 26:13–22CrossRefPubMedGoogle Scholar
  12. 12.
    Zhan H, Cardozo C, Raza A (2013) MicroRNAs in myeloproliferative neoplasms. Br J Haematol 161:471–483CrossRefPubMedGoogle Scholar
  13. 13.
    Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU, Ganser A, Eder M, Scherr M (2007) Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood 109:4399–4405CrossRefPubMedGoogle Scholar
  14. 14.
    Hussein K, Theophile K, Dralle W, Wiese B, Kreipe H, Bock O (2009) MicroRNA expression profiling of megakaryocytes in primary myelofibrosis and essential thrombocythemia. Platelets 20:391–400CrossRefPubMedGoogle Scholar
  15. 15.
    Norfo R, Zini R, Pennucci V, Bianchi E, Salati S, Guglielmelli P, Bogani C, Fanelli T, Mannarelli C, Rosti V, Pietra D, Salmoiraghi S, Bisognin A, Ruberti S, Rontauroli S, Sacchi G, Prudente Z, Barosi G, Cazzola M, Rambaldi A, Bortoluzzi S, Ferrari S, Tagliafico E, Vannucchi AM, Manfredini R; Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators (2014) MiRNA-mRNA integrative analysis in primary myelofibrosis CD34+ cells: role of miR-155/JARID2 axis in abnormal megakaryopoiesis. Blood 124:e21–e32CrossRefGoogle Scholar
  16. 16.
    Gebauer N, Bernard V, Gebauer W, Feller AC, Merz H (2013) MicroRNA expression and JAK2 allele burden in bone marrow trephine biopsies of polycythemia vera, essential thrombocythemia and early primary myelofibrosis. Acta Haematol 129:251–256CrossRefPubMedGoogle Scholar
  17. 17.
    Lopotová T, Záčková M, Klamová H, Moravcová J (2011) MicroRNA-451 in chronic myeloid leukemia: miR-451-BCR-ABL regulatory loop? Leuk Res 35:974–977CrossRefPubMedGoogle Scholar
  18. 18.
    Albano F, Anelli L, Zagaria A, Coccaro N, Casieri P, Minervini A, Specchia G (2012) SETBP1 and miR_4319 dysregulation in primary myelofibrosis progression to acute myeloid leukemia. J Hematol Oncol 5:48PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A, Hirst M, Hogge D, Marra M, Wells RA, Buckstein R, Lam W, Humphries RK, Karsan A (2010) Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 16:49–58CrossRefPubMedGoogle Scholar
  20. 20.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Ruiz-Ballesteros E, Mollejo M, Mateo M, Algara P, Martínez P, Piris MA (2007) MicroRNA losses in the frequently deleted region of 7q in SMZL. Leukemia 21:2547–2259CrossRefPubMedGoogle Scholar
  22. 22.
    Hussein K, Bock O, Theophile K, von Neuhoff N, Buhr T, Schlué J, Büsche G, Kreipe H (2009) JAK2(V617F) allele burden discriminates essential thrombocythemia from a subset of prefibrotic-stage primary myelofibrosis. Exp Hematol 37:1186–1193CrossRefPubMedGoogle Scholar
  23. 23.
    Hussein K, Theophile K, Büsche G, Schlegelberger B, Göhring G, Kreipe H, Bock O (2010) Significant inverse correlation of microRNA-150/MYB and microRNA-222/p27 in myelodysplastic Syndrome. Leuk Res 34:328–334CrossRefPubMedGoogle Scholar
  24. 24.
    Hussein K, Theophile K, Büsche G, Schlegelberger B, Göhring G, Kreipe H, Bock O (2010) Aberrant microRNA expression pattern in myelodysplastic bone marrow cells. Leuk Res 34:1169–1174CrossRefPubMedGoogle Scholar
  25. 25.
    Li Y, Wang Y, Yu L, Sun C, Cheng D, Yu S, Wang Q, Yan Y, Kang C, Jin S, An T, Shi C, Xu J, Wei C, Liu J, Sun J, Wen Y, Zhao S, Kong Y (2013) miR-146b-5p inhibits glioma migration and invasion by targeting MMP16. Cancer Lett 339:260–269CrossRefPubMedGoogle Scholar
  26. 26.
    Wang J, Wang Y, Han J, Li Y, Xie C, Xie L, Shi J, Zhang J, Yang B, Chen D, Meng X (2015) Integrated analysis of microRNA and mRNA expression profiles in the left atrium of patients with nonvalvular paroxysmal atrial fibrillation: role of miR-146b-5p in atrial fibrosis. Heart Rhythm 12:1018–1026CrossRefPubMedGoogle Scholar
  27. 27.
    Boultwood J, Pellagatti A, Cattan H, Lawrie CH, Giagounidis A, Malcovati L, Della Porta MG, Jädersten M, Killick S, Fidler C, Cazzola M, Hellström-Lindberg E, Wainscoat JS (2007) Gene expression profiling of CD34+ cells in patients with the 5q- syndrome. Br J Haematol 139:578–589CrossRefPubMedGoogle Scholar
  28. 28.
    Chen G, Zeng W, Miyazato A, Billings E, Maciejewski JP, Kajigaya S, Sloand EM, Young NS (2004) Distinctive gene expression profiles of CD34 cells from patients with myelodysplastic syndrome characterized by specific chromosomal abnormalities. Blood 104:4210–4218CrossRefPubMedGoogle Scholar
  29. 29.
    Krejčík Z, Beličková M, Hruštincová A, Kléma J, Zemanová Z, Michalová K, Čermák J, Jonášová A, Dostálová MM (2015) Aberrant expression of the microRNA cluster in 14q32 is associated with del(5q) myelodysplastic syndrome and lenalidomide treatment. Cancer Genet 208:156–161CrossRefPubMedGoogle Scholar
  30. 30.
    Ha JS, Jung HR (2015) Up-regulation of MicroRNA 146b is associated with myelofibrosis in myeloproliferative neoplasms. Ann Clin Lab Sci 45:308–314PubMedGoogle Scholar
  31. 31.
    Guglielmelli P, Tozzi L, Pancrazzi A, Bogani C, Antonioli E, Ponziani V, Poli G, Zini R, Ferrari S, Manfredini R, Bosi A, Vannucchi AM; MPD Research Consortium (2007) MicroRNA expression profile in granulocytes from primary myelofibrosis patients. Exp Hematol 35:1708–1718Google Scholar
  32. 32.
    Geraldo MV, Yamashita AS, Kimura ET (2013) MicroRNA miR-146b-5p regulates signal transduction of TGF-β by repressing SMAD4 in thyroid cancer. Oncogene 31:1910–1922CrossRefGoogle Scholar
  33. 33.
    Bock O, Muth M, Theophile K, Winter M, Hussein K, Büsche G, Kröger N, Kreipe H (2009) Identification of new target molecules PTK2, TGFBR2 and CD9 overexpressed during advanced bone marrow remodelling in primary myelofibrosis. Br J Haematol 146:510–520CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Angelika Stucki-Koch
    • 1
  • Gesa Hauck
    • 1
    • 2
  • Hans Kreipe
    • 1
  • Kais Hussein
    • 1
  1. 1.Institute of PathologyHannover Medical SchoolHannoverGermany
  2. 2.Neurologische KlinikAbteilung für NeuroradiologieHeidelbergGermany

Personalised recommendations