Skip to main content

Advertisement

Log in

The Concomitant Expression of Human Endogenous Retroviruses and Embryonic Genes in Cancer Cells under Microenvironmental Changes is a Potential Target for Antiretroviral Drugs

  • Original Article
  • Published:
Cancer Microenvironment

Abstract

In our genomes there are thousands of copies of human endogenous retroviruses (HERVs) originated from the integration of exogenous retroviruses that infected germ line cells millions of years ago, and currently an altered expression of this elements has been associated to the onset, progression and acquisition of aggressiveness features of many cancers. The transcriptional reactivation of HERVs is mainly an effect of their responsiveness to some factors in cell microenvironment, such as nutrients, hormones and cytokines. We have already demonstrated that, under pressure of microenvironmental changes, HERV-K (HML-2) activation is required to maintain human melanoma cell plasticity and CD133+ cancer stem cells survival. In the present study, the transcriptional activity of HERV-K (HML-2), HERV-H, CD133 and the embryonic transcription factors OCT4, NANOG and SOX2 was evaluated during the in vitro treatment with antiretroviral drugs in cells from melanoma, liver and lung cancers exposed to microenvironmental changes. The exposure to stem cell medium induced a phenotype switching with the generation of sphere-like aggregates, characterized by the concomitant increase of HERV-K (HML-2) and HERV-H, CD133 and embryonic genes transcriptional activity. Although with heterogenic response among the different cell lines, the in vitro treatment with antiretroviral drugs affected HERVs transcriptional activity in parallel with the reduction of CD133 and embryonic genes expression, clonogenic activity and cell growth, accompanied by the induction of apoptosis. The responsiveness to antiretroviral drugs treatment of cancer cells with stemness features and expressing HERVs suggests the use of these drugs as innovative approach to treat aggressive tumours in combination with chemotherapeutic/radiotherapy regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AZT:

Azidothymidine

EFV:

Efavirenz

CAFs:

Cancer associated fibroblasts

CTR:

Control

CSCs:

Cancer stem cells

DNMTi:

DNA methyltransferase inhibitors

ECM:

Extracellular matrix

Env:

Envelope

FBS:

Fetal bovine serum

GUSB:

Beta-glucuronidase

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HDACi:

Histone deacetylase inhibitors

HERVs:

Human endogenous retroviruses

hESC:

Human embryonic stem cells

HML-2:

Human-(mouse mammary tumor virus)-like-2

IFN:

Interferon

iPSC:

Induced pluripotent stem cells

LTRs:

Long terminal repeats

NANOG:

DNA binding homeobox transcription factor

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NNRTI:

Non-nucleoside reverse transcriptase inhibitor

NRTI:

Nucleoside reverse-transcriptase inhibitor

OCT4:

Octamer-binding transcription factor 4

SM:

Standard medium

RT:

Reverse-transcriptase

SOX2:

Sex determining region Y-box 2 transcription factor

TAMs:

Tumor-associated macrophages

TME:

Tumor microenvironment

References

  1. Grandi N, Tramontano E (2017) Type W human endogenous retrovirus (HERV-W) integrations and their mobilization by L1. Machinery: Contribution to the Human Transcriptome and Impact on the Host Physiopathology. Viruses 9:E162. https://doi.org/10.3390/v9070162

    Article  CAS  PubMed  Google Scholar 

  2. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921. https://doi.org/10.1038/35057062

    Article  CAS  PubMed  Google Scholar 

  3. Coffin JM, Hughes SH, Varmus HE (1997) The interactions of retroviruses and their hosts. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. CSHL Press, New York, pp 335–341

    Google Scholar 

  4. Hurst TP, Magiorkinis G (2017) Epigenetic control of human endogenous retrovirus expression: focus on regulation of long-terminal repeats (LTRs). Viruses 9:E130. https://doi.org/10.3390/v9060130

    Article  CAS  PubMed  Google Scholar 

  5. Balestrieri E, Argaw-Denboba A, Gambacurta A, Cipriani C, Bei R, Serafino A, Sinibaldi-Vallebona P, Matteucci C (2018) Human endogenous retrovirus K in the crosstalk between Cancer cells microenvironment and plasticity: a new perspective for combination therapy. Front Microbiol 9:1448. https://doi.org/10.3389/fmicb.2018.01448

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dupressoir A, Lavialle C, Heidmann T (2012) From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33:663–671. https://doi.org/10.1016/j.placenta.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  7. Gröger V, Cynis H (2018) Human endogenous retroviruses and their putative role in the development of autoimmune disorders such as multiple sclerosis. Front Microbiol 9:265. https://doi.org/10.3389/fmicb.2018.00265

    Article  PubMed  PubMed Central  Google Scholar 

  8. Küry P, Nath A, Créange A, Dolei A, Marche P, Gold J, Giovannoni G, Hartung HP, Perron H (2018) Human endogenous retroviruses in neurological diseases. Trends Mol Med 24:379–394. https://doi.org/10.1016/j.molmed.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  9. Balestrieri E, Arpino C, Matteucci C, Sorrentino R, Pica F, Alessandrelli R, Coniglio A, Curatolo P, Rezza G, Macciardi F, Garaci E, Gaudi S, Sinibaldi-Vallebona P (2012) HERVs expression in autism Spectrum disorders. PLoS One 7:e48831. https://doi.org/10.1371/journal.pone.0048831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Contreras-Galindo R, Kaplan MH, Contreras-Galindo AC, Gonzalez-Hernandez MJ, Ferlenghi I, Giusti F, Lorenzo E, Gitlin SD, Dosik MH, Yamamura Y, Markovitz DM (2012) Characterization of human endogenous retroviral elements in the blood of HIV-1-infected individuals. J Virol 86:262–276. https://doi.org/10.1128/JVI.00602-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matteucci C, Balestrieri E, Argaw-Denboba A, Sinibaldi-Vallebona P (2018) Human endogenous retroviruses role in cancer cell stemness. Semin Cancer Biol 53:17–30. https://doi.org/10.1016/j.semcancer.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  12. Downey RF, Sullivan FJ, Wang-Johanning F, Ambs S, Giles FJ, Glynn SA (2015) Human endogenous retrovirus K and cancer: innocent bystander or tumorigenic accomplice? Int J Cancer 137:1249–1257. https://doi.org/10.1002/ijc.29003

    Article  CAS  PubMed  Google Scholar 

  13. Kassiotis G, Stoye JP (2017) Making a virtue of necessity: the pleiotropic role of human endogenous retroviruses in cancer. Philos Trans R Soc Lond Ser B Biol Sci 372:20160277. https://doi.org/10.1098/rstb.2016.0277

    Article  CAS  Google Scholar 

  14. Lemaître C, Tsang J, Bireau C, Heidmann T, Dewannieux M (2017) A human endogenous retrovirus-derived gene that can contribute to oncogenesis by activating the ERK pathway and inducing migration and invasion. PLoS Pathog 13:e1006451. https://doi.org/10.1371/journal.ppat.1006451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sauter M, Schommer S, Kremmer E et al (1995) Human endogenous retrovirus K10: expression of gag protein and detection of antibodies in patients with seminomas. J Virol 69:414–421

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Contreras-Galindo R, Kaplan MH, Leissner P, Verjat T, Ferlenghi I, Bagnoli F, Giusti F, Dosik MH, Hayes DF, Gitlin SD, Markovitz DM (2008) Human endogenous retrovirus K (HML-2) elements in the plasma of peoplewith lymphoma and breast cancer. J Virol 82:9329–9336. https://doi.org/10.1128/JVI.00646-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang-Johanning F, Li M, Esteva FJ, Hess KR, Yin B, Rycaj K, Plummer JB, Garza JG, Ambs S, Johanning GL (2014) Human endogenous retrovirus type K antibodies and mRNA as serum biomarkers of early-stage breast cancer. Int J Cancer 134:587–595. https://doi.org/10.1002/ijc.28389

    Article  CAS  PubMed  Google Scholar 

  18. Grandi N, Tramontano E (2018) Human endogenous retroviruses are ancient acquired elements still shaping innate immune responses. Front Immunol 9:2039. https://doi.org/10.3389/fimmu.2018.02039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Witz IP (2009) The tumor microenvironment: the making of a paradigm. Cancer Microenviron 2:S9–S17. https://doi.org/10.1007/s12307-009-0025-8

    Article  Google Scholar 

  20. Maman S, Witz IP (2018) A history of exploring cancer in context. Nat Rev Cancer 18:359–376. https://doi.org/10.1038/s41568-018-0006-7

    Article  CAS  PubMed  Google Scholar 

  21. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322. https://doi.org/10.1016/j.ccr.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  22. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125:5591–5596. https://doi.org/10.1242/jcs.116392

    Article  CAS  PubMed  Google Scholar 

  23. Sainio A, Järveläinen H (2014) Extracellular matrix macromolecules: potential tools and targets in cancer gene therapy. Mol Cell Ther 2:14. https://doi.org/10.1186/2052-8426-2-14

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gouirand V, Guillaumond F, Vasseur S (2018) Influence of the tumor microenvironment on Cancer cells metabolic reprogramming. Front Oncol 8:117. https://doi.org/10.3389/fonc.2018.00117

    Article  PubMed  PubMed Central  Google Scholar 

  25. Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I (2018) The hypoxic tumour microenvironment. Oncogenesis 7:10. https://doi.org/10.1038/s41389-017-0011-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Da Silva-Diz V, Lorenzo-Sanz L, Bernat-Peguera A, Lopez-Cerda M, Muñoz P (2018) Cancer cell plasticity: impact on tumor progression and therapy response. Semin Cancer Biol 53:48–58. https://doi.org/10.1016/j.semcancer.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  27. Agliano A, Calvo A, Box C (2017) The challenge of targeting cancer stem cells to halt metastasis. Semin Cancer Biol 44:25–42. https://doi.org/10.1016/j.semcancer.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  28. Ahmed N, Escalona R, Leung D, Chan E, Kannourakis G (2018) Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Semin Cancer Biol 53:265–281. https://doi.org/10.1016/j.semcancer.2018.10.002

    Article  CAS  PubMed  Google Scholar 

  29. Poli V, Fagnocchi L, Zippo A (2018) Tumorigenic cell reprogramming and Cancer plasticity: interplay between signaling, microenvironment, and epigenetics. Stem Cells Int 2018:4598195–4598116. https://doi.org/10.1155/2018/4598195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. La Porta CAM, Zapperi S (2018) Explaining the dynamics of tumor aggressiveness: at the crossroads between biology, artificial intelligence and complex systems. Semin Cancer Biol 53:42–47. https://doi.org/10.1016/j.semcancer.2018.07.003

    Article  PubMed  Google Scholar 

  31. Glumac PM, LeBeau AM (2018) The role of CD133 in cancer: a concise review. Clin Transl Med 7:18. https://doi.org/10.1186/s40169-018-0198-1

    Article  PubMed  PubMed Central  Google Scholar 

  32. El-Khattouti A, Selimovic D, Haïkel Y, Megahed M, Gomez CR, Hassan M (2009) Identification and analysis of CD133(+) melanoma stem-like cells conferring resistance to taxol: an insight into the mechanisms of their resistance and response. Cancer Lett 343:123–133. https://doi.org/10.1016/j.canlet.2013.09.024

    Article  CAS  Google Scholar 

  33. Vilchez V, Turcios L, Zaytseva Y, Stewart R, Lee EY, Maynard E, Shah MB, Daily MF, Tzeng CWD, Davenport D, Castellanos AL, Krohmer S, Hosein PJ, Evers BM, Gedaly R (2016) Cancer stem cell marker expression alone and in combination with microvascular invasion predicts poor prognosis in patients undergoing transplantation for hepatocellular carcinoma. Am J Surg 212:238–245. https://doi.org/10.1016/j.amjsurg.2015.12.019

    Article  PubMed  Google Scholar 

  34. Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L, Pratesi G, Fabbri A, Andriani F, Tinelli S, Roz E, Caserini R, Lo Vullo S, Camerini T, Mariani L, Delia D, Calabro E, Pastorino U, Sozzi G (2009) Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci U S A 106:16281–16286. https://doi.org/10.1073/pnas.0905653106

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hadjimichael C, Chanoumidou K, Papadopoulou N, Arampatzi P, Papamatheakis J, Kretsovali A (2009) Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells 7:1150–1184. https://doi.org/10.4252/wjsc.v7.i9.1150

    Article  Google Scholar 

  36. Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP (2009) Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 18:1093–1108. https://doi.org/10.1089/scd.2009.0113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507. https://doi.org/10.1038/ng.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Argaw-Denboba A, Balestrieri E, Serafino A, Cipriani C, Bucci I, Sorrentino R, Sciamanna I, Gambacurta A, Sinibaldi-Vallebona P, Matteucci C (2017) HERV-K activation is strictly required to sustain CD133+ melanoma cells with stemness features. J Exp Clin Cancer Res 36:20. https://doi.org/10.1186/s13046-016-0485-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Balestrieri E, Pica F, Matteucci C, Zenobi R, Sorrentino R, Argaw-Denboba A, Cipriani C, Bucci I, Sinibaldi-Vallebona P (2015) Transcriptional activity of human endogenous retroviruses in human peripheral blood mononuclear cells. Biomed Res Int 2015:164529–164529. https://doi.org/10.1155/2015/164529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yao J, Li J, Geng P, Li Y, Chen H, Zhu Y (2015) Knockdown of a HIF-2α promoter upstream long noncoding RNA impairs colorectal cancer stem cell properties in vitro through HIF-2α downregulation. Onco Targets Ther 25:3467–3474. https://doi.org/10.2147/OTT.S81393

    Article  Google Scholar 

  41. Subramanian RP, Wildschutte JH, Russo C, Coffin JM (2011) Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology 8:90. https://doi.org/10.1186/1742-4690-8-90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mayer J, Sauter M, Rácz A, Scherer D, Mueller-Lantzsch N, Meese E (1999) An almost-intact human endogenous retrovirus K on human chromosome 7. Nat Genet 21:257–258

    Article  CAS  Google Scholar 

  43. de Parseval N, Casella J, Gressin L, Heidmann T (2001) Characterization of the three HERV-H proviruses with an open envelope reading frame encompassing the immunosuppressive domain and evolutionary history in primates. Virology 279:558–569. https://doi.org/10.1006/viro.2000.0737

    Article  CAS  PubMed  Google Scholar 

  44. Vargiu L, Rodriguez-Tomé P, Sperber GO et al (2016) Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology 13:7. https://doi.org/10.1186/s12977-015-0232-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lindeskog M, Mager DL, Blomberg J (1999) Isolation of a human endogenous retroviral HERV-H element with an open env Reading frame. Virology 258:441–450. https://doi.org/10.1006/viro.1999.9750

    Article  CAS  PubMed  Google Scholar 

  46. Hirose Y, Takamatsu M, Harada F (1993) Presence of env genes in members of the RTVL-H family human endogenous retrovirus-like elements. Virology 192:52–61. https://doi.org/10.1006/viro.1993.1007

    Article  CAS  PubMed  Google Scholar 

  47. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319. https://doi.org/10.1038/nprot.2006.339

    Article  CAS  PubMed  Google Scholar 

  48. Geissmann Q (2013) OpenCFU, a new free and open-source software to count cell colonies and other circular objects. PLoS One 8:e54072. https://doi.org/10.1371/journal.pone.0054072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Serafino A, Balestrieri E, Pierimarchi P, Matteucci C, Moroni G, Oricchio E, Rasi G, Mastino A, Spadafora C, Garaci E, Vallebona PS (2009) The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation. Exp Cell Res 315:849–862. https://doi.org/10.1016/j.yexcr.2008.12.023

    Article  CAS  PubMed  Google Scholar 

  50. Harada K, Nonaka T, Hamada N, Sakurai H, Hasegawa M, Funayama T, Kakizaki T, Kobayashi Y, Nakano T (2009) Heavy-ion-induced bystander killing of human lung cancer cells: role of gap junctional intercellular communication. Cancer Sci 100:684–688. https://doi.org/10.1111/j.1349-7006.2009.01093.x

    Article  CAS  PubMed  Google Scholar 

  51. Glinsky GV (2015) Transposable elements and DNA methylation create in embryonic stem cells human-specific regulatory sequences associated with distal enhancers and noncoding RNAs. Genome Biol Evol 7:1432–1454. https://doi.org/10.1093/gbe/evv081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Santoni FA, Guerra J, Luban J (2012) HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency. Retrovirology 9:111. https://doi.org/10.1186/1742-4690-9-111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu X, Sachs F, Ramsay L, Jacques PÉ, Göke J, Bourque G, Ng HH (2014) The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol 21:423–425. https://doi.org/10.1038/nsmb.2799

    Article  CAS  PubMed  Google Scholar 

  54. Schlesinger S, Goff SP (2015) Retroviral transcriptional regulation and embryonic stem cells: war and peace. Mol Cell Biol 35:770–777. https://doi.org/10.1128/MCB.01293-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grow EJ, Flynn RA, Chavez SL, Bayless NL, Wossidlo M, Wesche DJ, Martin L, Ware CB, Blish CA, Chang HY, Reijo Pera RA, Wysocka J (2015) Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522:221–225. https://doi.org/10.1038/nature14308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fuchs NV, Loewer S, Daley GQ, Izsvák Z, Löwer J, Löwer R (2013) Human endogenous retrovirus K (HML-2) RNA and protein expression is a marker for human embryonic and induced pluripotent stem cells. Retrovirology 10:115. https://doi.org/10.1186/1742-4690-10-115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu A, Yu X, Liu S (2013) Pluripotency transcription factors and cancer stem cells: small genes make a big difference. Chin J Cancer 32:483–487. https://doi.org/10.5732/cjc.012.10282

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen YC, Hsu HS, Chen YW, Tsai TH, How CK, Wang CY, Hung SC, Chang YL, Tsai ML, Lee YY, Ku HH, Chiou SH (2008) Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 3:e2637. https://doi.org/10.1371/journal.pone.0002637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ma W, Hong Z, Liu H, Chen X, Ding L, Liu Z, Zhou F, Yuan Y (2016) Human endogenous retroviruses-K (HML-2) expression is correlated with prognosis and Progress of hepatocellular carcinoma. Biomed Res Int 2016:8201642–8201649. https://doi.org/10.1155/2016/8201642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu C, Liu L, Wang X, Liu Y, Wang M, Zhu F (2017) HBV X protein induces overexpression of HERV-W env through NF-κB in HepG2 cells. Virus Genes 53:797–806. https://doi.org/10.1007/s11262-017-1479-2

    Article  CAS  PubMed  Google Scholar 

  61. Sinibaldi-Vallebona P, Matteucci C, Spadafora C (2011) Retrotransposon-encoded reverse transcriptase in the genesis, progression and cellular plasticity of human cancer. Cancers (Basel) 3:1141–1157. https://doi.org/10.3390/cancers3011141

    Article  Google Scholar 

  62. Tyagi R, Li W, Parades D, Bianchet MA, Nath A (2017) Inhibition of human endogenous retrovirus-K by antiretroviral drugs. Retrovirology 14:21. https://doi.org/10.1186/s12977-017-0347-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Contreras-Galindo R, Dube D, Fujinaga K, Kaplan MH, Markovitz DM (2017) Susceptibility of human endogenous retrovirus type K to reverse transcriptase inhibitors. J Virol 91:e01309–e01317. https://doi.org/10.1128/JVI.01309-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Khan GN, Kim EJ, Shin TS, Lee SH (2017) Heterogeneous cell types in single-cell-derived clones of MCF7 and MDA-MB-231 cells. Anticancer Res 37:2343–2354. https://doi.org/10.21873/anticanres.11572

    Article  CAS  PubMed  Google Scholar 

  65. Hu T, Liu S, Breiter DR, Wang F, Tang Y, Sun S (2008) Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res 68:6533–6540. https://doi.org/10.1158/0008-5472.CAN-07-6642

    Article  CAS  PubMed  Google Scholar 

  66. Jia X, Li X, Xu Y, Zhang S, Mou W, Liu Y, Liu Y, Lv D, Liu CH, Tan X, Xiang R, Li N (2011) SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. J Mol Cell Biol 3:230–238. https://doi.org/10.1093/jmcb/mjr002

    Article  CAS  PubMed  Google Scholar 

  67. Matteucci C, Minutolo A, Balestrieri E, Marino-Merlo F, Bramanti P, Garaci E, Macchi B, Mastino A (2010) Inhibition of NF-κB activation sensitizes U937 cells to 3′-azido-3′-deoxythymidine induced apoptosis. Cell Death Dis 1:e81. https://doi.org/10.1038/cddis.2010.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Matteucci C, Minutolo A, Marino-Merlo F, Grelli S, Frezza C, Mastino A, Macchi B (2015) Characterization of the enhanced apoptotic response to azidothymidine by pharmacological inhibition of NF-kB. Life Sci 127:90–97. https://doi.org/10.1016/j.lfs.2015.01.038

    Article  CAS  PubMed  Google Scholar 

  69. Matteucci C, Minutolo A, Balestrieri E, Ascolani A, Grelli S, Macchi B, Mastino A (2009) Effector caspase activation, in the absence of a conspicuous apoptosis induction, in mononuclear cells treated with azidothymidine. Pharmacol Res 59:125–133. https://doi.org/10.1016/j.phrs.2008.11.003

    Article  CAS  PubMed  Google Scholar 

  70. Sciamanna I, Landriscina M, Pittoggi C, Quirino M, Mearelli C, Beraldi R, Mattei E, Serafino A, Cassano A, Sinibaldi-Vallebona P, Garaci E, Barone C, Spadafora C (2005) Inhibition of endogenous reverse transcriptase antagonizes human tumor growth. Oncogene 24:3923–3931. https://doi.org/10.1038/sj.onc.1208562

    Article  CAS  PubMed  Google Scholar 

  71. Hanahan D, Weinberg RA (2011) Hallmarks of Cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  72. Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2:a001008. https://doi.org/10.1101/cshperspect.a001008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bryant KL, Mancias JD, Kimmelman AC, Der CJ (2014) KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci 39:91–100. https://doi.org/10.1016/j.tibs.2013.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zagorac S, Alcala S, Fernandez Bayon G, Bou Kheir T, Schoenhals M, Gonzalez-Neira A, Fernandez Fraga M, Aicher A, Heeschen C, Sainz B (2016) DNMT1 inhibition reprograms pancreatic Cancer stem cells via upregulation of the miR-17-92 cluster. Cancer Res 76:4546–4558. https://doi.org/10.1158/0008-5472.CAN-15-3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brocks D, Schmidt CR, Daskalakis M, Jang HS, Shah NM, Li D, Li J, Zhang B, Hou Y, Laudato S, Lipka DB, Schott J, Bierhoff H, Assenov Y, Helf M, Ressnerova A, Islam MS, Lindroth AM, Haas S, Essers M, Imbusch CD, Brors B, Oehme I, Witt O, Lübbert M, Mallm JP, Rippe K, Will R, Weichenhan D, Stoecklin G, Gerhäuser C, Oakes CC, Wang T, Plass C (2017) DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat Genet 49:1052–1060. https://doi.org/10.1038/ng.3889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Attermann AS, Bjerregaard AM, Saini SK, Grønbæk K, Hadrup SR (2018) Human endogenous retroviruses and their implication for immunotherapeutics of cancer. Ann Oncol 18:2183–2191. https://doi.org/10.1093/annonc/mdy413

    Article  Google Scholar 

  77. Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, Makarov V, Buhu S, Slamon DJ, Wolchok JD, Pardoll DM, Beckmann MW, Zahnow CA, Merghoub T, Chan TA, Baylin SB, Strick R (2015) Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162:974–986. https://doi.org/10.1016/j.cell.2015.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova II (2018) Therapy resistance mediated by cancer stem cells. Semin Cancer Biol 53:156–167. https://doi.org/10.1016/j.semcancer.2018.11.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the Italian Ministry of University and Research (Research Projects of National Interest), grant no. 2010PHT9NF_001.

Author information

Authors and Affiliations

Authors

Contributions

CM, EB and PSV conceived and designed the study. CM, EB, AAD and AG conceived and designed the experiments. AG, VP, AAD performed the experiments. CM, AG, EB, VP analysed and interpreted the data. CC, MTM supported the experiments and helped to draft the manuscript. SG contributed with conceptualisation the study and critical revision of manuscript. CM, AG, EB and PSV wrote the manuscript. MTM provided the linguistic assistance. PSV and CM provided the financial support and supervised laboratorial processes. All the authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Claudia Matteucci.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giovinazzo, A., Balestrieri, E., Petrone, V. et al. The Concomitant Expression of Human Endogenous Retroviruses and Embryonic Genes in Cancer Cells under Microenvironmental Changes is a Potential Target for Antiretroviral Drugs. Cancer Microenvironment 12, 105–118 (2019). https://doi.org/10.1007/s12307-019-00231-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-019-00231-3

Keywords

Navigation