Skip to main content

Advertisement

Log in

Extracellular ATP is Differentially Metabolized on Papillary Thyroid Carcinoma Cells Surface in Comparison to Normal Cells

  • Original Article
  • Published:
Cancer Microenvironment

Abstract

The incidence of differentiated thyroid cancer has been increasing. Nevertheless, its molecular mechanisms are not well understood. In recent years, extracellular nucleotides and nucleosides have emerged as important modulators of tumor microenvironment. Extracellular ATP is mainly hydrolyzed by NTPDase1/CD39 and NTPDase2/CD39L1, generating AMP, which is hydrolyzed by ecto-5′-nucleotidase (CD73) to adenosine, a possible promoter of tumor growth and metastasis. There are no studies evaluating the expression and functionality of these ectonucleotidases on normal or tumor-derived thyroid cells. Thus, we investigated the ability of thyroid cancer cells to hydrolyze extracellular ATP generating adenosine, and the expression of ecto-enzymes, as compared to normal cells. We found that normal thyroid derived cells presented a higher ability to hydrolyze ATP and higher mRNA levels for ENTDP1–2, when compared to papillary thyroid carcinoma (PTC) derived cells, which had a higher ability to hydrolyze AMP and expressed CD73 mRNA and protein at higher levels. In addition, adenosine induced an increase in proliferation and migration in PTC derived cells, whose effect was blocked by APCP, a non-hydrolysable ADP analogue, which is an inhibitor of CD73. Taken together, these results showed that thyroid follicular cells have a functional purinergic signaling. The higher expression of CD73 in PTC derived cells might favor the accumulation of extracellular adenosine in the tumor microenvironment, which could promote tumor progression. Therefore, as already shown for other tumors, the purinergic signaling should be considered a potential target for thyroid cancer management and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Omry-Orbach G (2016) Risk stratification in differentiated thyroid cancer: an ongoing process. Rambam Maimonides Med J 7(1):e0003. https://doi.org/10.5041/RMMJ.10230

    Article  PubMed Central  Google Scholar 

  2. Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G, Sun Y (2015) New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 13:45. https://doi.org/10.1186/s12916-015-0278-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Braganhol E, Morrone FB, Bernardi A, Huppes D, Meurer L, Edelweiss MI, Lenz G, Wink MR, Robson SC, Battastini AM (2009) Selective NTPDase2 expression modulates in vivo rat glioma growth. Cancer Sci 100(8):1434–1442. https://doi.org/10.1111/j.1349-7006.2009.01219.x

    Article  PubMed  CAS  Google Scholar 

  4. Morrone FB, Oliveira DL, Gamermann P, Stella J, Wofchuk S, Wink MR, Meurer L, Edelweiss MI, Lenz G, Battastini AM (2006) In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model. BMC Cancer 6:226. https://doi.org/10.1186/1471-2407-6-226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wink MR, Lenz G, Braganhol E, Tamajusuku AS, Schwartsmann G, Sarkis JJ, Battastini AM (2003) Altered extracellular ATP, ADP and AMP catabolism in glioma cell lines. Cancer Lett 198(2):211–218

    Article  PubMed  CAS  Google Scholar 

  6. Buffon A, Ribeiro VB, Wink MR, Casali EA, Sarkis JJ (2007) Nucleotide metabolizing ecto-enzymes in Walker 256 tumor cells: molecular identification, kinetic characterization and biochemical properties. Life Sci 80(10):950–958. https://doi.org/10.1016/j.lfs.2006.11.024

    Article  PubMed  CAS  Google Scholar 

  7. Buffon A, Wink MR, Ribeiro BV, Casali EA, Libermann TA, Zerbini LF, Robson SC, Sarkis JJ (2007) NTPDase and 5′ ecto-nucleotidase expression profiles and the pattern of extracellular ATP metabolism in the Walker 256 tumor. Biochim Biophys Acta 1770(8):1259–1265. https://doi.org/10.1016/j.bbagen.2007.05.004

    Article  PubMed  CAS  Google Scholar 

  8. Tamajusuku AS, Villodre ES, Paulus R, Coutinho-Silva R, Battasstini AM, Wink MR, Lenz G (2010) Characterization of ATP-induced cell death in the GL261 mouse glioma. J Cell Biochem 109(5):983–991. https://doi.org/10.1002/jcb.22478

    Article  PubMed  CAS  Google Scholar 

  9. Di Virgilio F, Adinolfi E (2016) Extracellular purines, purinergic receptors and tumor growth. Oncogene 36:293–303. https://doi.org/10.1038/onc.2016.206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502. https://doi.org/10.1007/s11302-012-9309-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kondo T, Nakazawa T, Murata SI, Katoh R (2006) Expression of CD73 and its ecto-5′-nucleotidase activity are elevated in papillary thyroid carcinomas. Histopathology 48(5):612–614. https://doi.org/10.1111/j.1365-2559.2005.02277.x

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka J, Ogura T, Sato H, Hatano M (1987) Establishment and biological characterization of an in vitro human cytomegalovirus latency model. Virology 161(1):62–72

    Article  PubMed  CAS  Google Scholar 

  13. Challeton C, Branea F, Schlumberger M, Gaillard N, de Vathaire F, Badie C, Antonini P, Parmentier C (1997) Characterization and radiosensitivity at high or low dose rate of four cell lines derived from human thyroid tumors. Int J Radiat Oncol Biol Phys 37(1):163–169

    Article  PubMed  CAS  Google Scholar 

  14. Fusco A, Berlingieri MT, Di Fiore PP, Portella G, Grieco M, Vecchio G (1987) One- and two-step transformations of rat thyroid epithelial cells by retroviral oncogenes. Mol Cell Biol 7(9):3365–3370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ambesi-Impiombato FS, Parks LA, Coon HG (1980) Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci U S A 77(6):3455–3459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Naasani LI, Rodrigues C, de Campos RP, Beckenkamp LR, Iser IC, Bertoni AP, Wink MR (2017) Extracellular nucleotide hydrolysis in dermal and Limbal mesenchymal stem cells: a source of adenosine production. J Cell Biochem 118:2430–2442. https://doi.org/10.1002/jcb.25909

    Article  PubMed  CAS  Google Scholar 

  17. Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333. https://doi.org/10.1038/nprot.2007.30

    Article  PubMed  CAS  Google Scholar 

  18. Wang R, Zhang Y, Lin X, Gao Y, Zhu Y (2017) Prognositic value of CD73-adenosinergic pathway in solid tumor: a meta-analysis and systematic review. Oncotarget 8(34):57327–57336. https://doi.org/10.18632/oncotarget.16905

    Article  PubMed  PubMed Central  Google Scholar 

  19. Solini A, Cuccato S, Ferrari D, Santini E, Gulinelli S, Callegari MG, Dardano A, Faviana P, Madec S, Di Virgilio F, Monzani F (2008) Increased P2X7 receptor expression and function in thyroid papillary cancer: a new potential marker of the disease? Endocrinology 149(1):389–396. https://doi.org/10.1210/en.2007-1223

    Article  PubMed  CAS  Google Scholar 

  20. Wink MR, Tamajusuku AS, Braganhol E, Casali EA, Barreto-Chaves ML, Sarkis JJ, Battastini AM (2003) Thyroid hormone upregulates ecto-5′-nucleotidase/CD73 in C6 rat glioma cells. Mol Cell Endocrinol 205(1–2):107–114

    Article  PubMed  CAS  Google Scholar 

  21. Tamajusuku AS, Carrillo-Sepulveda MA, Braganhol E, Wink MR, Sarkis JJ, Barreto-Chaves ML, Battastini AM (2006) Activity and expression of ecto-5′-nucleotidase/CD73 are increased by thyroid hormones in vascular smooth muscle cells. Mol Cell Biochem 289(1–2):65–72. https://doi.org/10.1007/s11010-006-9148-0

    Article  PubMed  CAS  Google Scholar 

  22. Bastomsky CH, Zakarija M, McKenzie JM (1971) Thyroid hydrolysis of cyclic AMP as influenced by thyroid gland activity. Biochim Biophys Acta 230(2):286–295

    Article  PubMed  CAS  Google Scholar 

  23. Huang Y, Prasad M, Lemon WJ, Hampel H, Wright FA, Kornacker K, LiVolsi V, Frankel W, Kloos RT, Eng C, Pellegata NS, de la Chapelle A (2001) Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci U S A 98(26):15044–15049. https://doi.org/10.1073/pnas.251547398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Morello S, Petrella A, Festa M, Popolo A, Monaco M, Vuttariello E, Chiappetta G, Parente L, Pinto A (2008) Cl-IB-MECA inhibits human thyroid cancer cell proliferation independently of A3 adenosine receptor activation. Cancer Biol Ther 7(2):278–284

    Article  PubMed  CAS  Google Scholar 

  25. Goffard JC, Jin L, Mircescu H, Van Hummelen P, Ledent C, Dumont JE, Corvilain B (2004) Gene expression profile in thyroid of transgenic mice overexpressing the adenosine receptor 2a. Mol Endocrinol 18(1):194–213. https://doi.org/10.1210/me.2003-0249

    Article  PubMed  CAS  Google Scholar 

  26. Zhang L, Xu J, Sun N, Cai H, Ren M, Zhang J, Yu C, Wang Z, Gao L, Zhao J (2013) The presence of adenosine A2a receptor in thyrocytes and its involvement in Graves’ IgG-induced VEGF expression. Endocrinology 154(12):4927–4938. https://doi.org/10.1210/en.2012-2258

    Article  PubMed  CAS  Google Scholar 

  27. Zeiser R, Robson SC, Vaikunthanathan T, Dworak M, Burnstock G (2016) Unlocking the potential of purinergic signaling in transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 16(10):2781–2794. https://doi.org/10.1111/ajt.13801

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ana Luiza Silva Maia (UFRGS-HCPA, Porto Alegre, Brazil) for providing the K1 and TPC-1 cells lines, and Dr. Denise Pires de Carvalho (UFRJ, Rio de Janeiro, Brazil) for providing Nthy-1, FRTL-5 and PCCL3 cells.

Funding

APSB was supported by a post doc fellowship from CAPES/PNPD (Programa Nacional de Pós-Doutorado); EB, MRW and TWF are recipients of research fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). This study was supported by CNPq, Novas Terapias Portadoras de Futuro (457394/2013–7); CAPES-PROBITEC (004/2012) and PROCAD (158819); ICGEB (405231/2015–6 MCTI/CNPq-ICGEB); FIPE/HCPA (N° 15–0590); and Fundação de Amparo à Pesquisa do Rio Grande do Sul (Pronex FAPERGS/CNPq 16/2551–0000473-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcia Rosângela Wink.

Ethics declarations

Conflict of Interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertoni, A.P.S., de Campos, R.P., Tsao, M. et al. Extracellular ATP is Differentially Metabolized on Papillary Thyroid Carcinoma Cells Surface in Comparison to Normal Cells. Cancer Microenvironment 11, 61–70 (2018). https://doi.org/10.1007/s12307-018-0206-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-018-0206-4

Keywords

Navigation