Participation of Tumor-Associated Myeloid Cells in Progression of Amelanotic Melanoma (RMM Tumor Line) in F344 Rats, with Particular Reference to MHC Class II- and CD163-Expressing Cells


Tumor progression is often influenced by infiltration of myeloid cells; depending on the M1- or M2-like activation status, these cells may have either inhibitory or promoting effects on tumor growth. We investigated the properties of tumor-associated myeloid cells in a previously established homotransplantable amelanotic melanoma (RMM tumor line) in F344 rats. RMM tumor nodules were allowed to reach the sizes of 0.5, 1, 2 and 3 cm, respectively. Immunohistochemistry and flow cytometry was performed for macrophage markers CD68 and CD163, and for the antigen-presenting cell marker, MHC class II. Although no significant change was observed in the number of CD68+ and CD163+ macrophages during RMM progression, the number of MHC class II+ antigen-presenting cells was reduced in 3 cm nodules. Real-time RT-PCR of laser microdissection samples obtained from RMM regions rich in MHC class II+ cells demonstrated high expressions of M1-like factors: IFN-γ, GM-CSF and IL-12a. Furthermore, fluorescence-activated cell sorting, followed by real-time RT-PCR for CD11b+ MHC class II+ (myeloid antigen-presenting cells), CD11b+ CD163+ (M2 type myeloid cells), CD11b+ CD80+ (M1 type myeloid cells) and CD11b+ CD11c+ (dendritic cells) cells was performed. Based on the levels of inflammation- and tumor progression-related factors, MHC class II+ antigen-presenting cells showed polarization towards M1, while CD163+ macrophages, towards M2. CD80+ and CD11c+ myeloid cells did not show clear functional polarization. Our results provide novel information on tumor-associated myeloid cells in amelanotic melanoma, and may become useful in further research on melanoma immunity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11



chemokine (C-C motif) ligand


cluster of differentiation


chemokine (C-X-C motif) ligand


fluorescence-activated cell sorting


fetal bovine serum


FMS-related tyrosine kinase


granulocyte-macrophage colony-stimulating factor


hematoxylin and eosin


hypoxia-inducible factor






laser microdissection


myeloid-derived suppressor cell


major histocompatibility complex


matrix metalloproteinase


neutral buffered formalin


phosphate buffered saline




reverse transcriptase polymerase chain reaction


tumor-associated macrophage


transforming growth factor


tissue inhibitor of metalloproteinase


tumor necrosis factor


vascular endothelial growth factor


  1. 1.

    Schmid MC, Varner JA (2012) Myeloid cells in tumor inflammation. Vasc Cell 4:14. doi:10.1186/2045-824X-4-14

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Sica A, Porta C, Morlacchi S, Banfi S, Strauss L, Rimoldi M, Totaro MG, Riboldi E (2012) Origin and functions of tumor-associated myeloid cells (TAMCs). Cancer Microenviron 5:133–149. doi:10.1007/s12307-011-0091-6

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Dong P, Ma L, Liu L, Zhao G, Zhang S, Dong L, Xue R, Chen S (2016) CD86+/CD206+, diametrically polarized tumor-associated macrophages, predict hepatocellular carcinoma patient prognosis. Int J Mol Sci 17:320. doi:10.3390/ijms17030320

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol. doi:10.1155/2012/948098

  5. 5.

    Liu CY, Xu JY, Shi XY, Huang W, Ruan TY, Xie P, Ding JL (2013) M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Investig 93:844–854. doi:10.1038/labinvest.2013.69

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Quatromoni JG, Eruslanov E (2012) Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am J Trans Res 4:376–389

    Google Scholar 

  7. 7.

    Martinez FO and Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F100Prime rep 6:13. doi:10.12703/P6-13.

  8. 8.

    Umemura N, Saio M, Suwa T, Kitoh Y, Bai J, Nonaka K, Ouyang GF, Okada M, Balazs M, Adany R, Shibata T, Takami T (2008) Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol 83:1136–1144. doi:10.1189/jlb.0907611

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Yang WC, Ma G, Chen SH, Pan PY (2013) Polarization and reprogramming of myeloid-derived suppressor cells. J Mol Cell Biol 5:207–209. doi:10.1093/jmcb/mjt009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil (TAN) phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 8:183–194. doi:10.1016/j.ccr.2009.06.017

    Article  Google Scholar 

  11. 11.

    Thibodeau J, Bourgeois-Daigneault MC, Lapointe R (2012) Targeting the MHC class II antigen presentation pathway in cancer immunotherapy. Oncoimmunology 1:908–916. doi:10.4161/onci.21205

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Gerner MY, Mescher MF (2009) Antigen processing and MHC-II presentation by dermal and tumor-infiltrating dendritic cells. J Immunol 182:2726–2737. doi:10.4049/jimmunol.0803479

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Rőszer T (2014) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediat Inflamm. doi:10.1155/2015/816460

  14. 14.

    Yaddanapudi K, Putty K, Rendon BE, Lamont GJ, Faughn JD, Satoskar A, Lasnik A, Eaton JW, Mitchell RA (2013) Control of tumor-associated macrophage alternative activation by macrophage migration inhibitory factor. J Immunol 190:2984–2993. doi:10.4049/jimmunol.1201650

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Johnson DB, Estrada MV, Salgado R, Sanchez V, Doxie DB, Opalenik SR, Vilgelm AE, Feld E, Johnson AS, Greenplate AR, Sanders ME, Lovly CM, Frederick DT, Kelley MC, Richmond A, Irish JM, Shyr Y, Sullivan RJ, Puzanov I, Sosman JA, Balko JM (2016) Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun 7:10582. doi:10.1038/ncomms10582

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Bondoc A, Katou-Ichikawa C, Golbar HM, Tanaka M, Izawa T, Kuwamura M, Yamate J (2016) Establishment and characterization of a transplantable tumor line (RMM) and cell line (RMM-C) from a malignant amelanotic melanoma in the F344 rat, with particular reference to galectin-3 expression in vivo and in vitro. Histol Histopathol 7:11748. doi:10.14670/HH-11-748

    Google Scholar 

  17. 17.

    Barth RF, Kaur B (2009) Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neuro-Oncol 94:299–312. doi:10.1007/s11060-009-9875-7

    Article  Google Scholar 

  18. 18.

    Szpirer C (2010) Cancer research in rat models. Methods Mol Biol 597:445–458. doi:10.1007/978-1-60327-389-3_30

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Faustino-Rocha A, Oliveira PA, Pinho-Oliveira J, Teixeira-Guedes C, Soares-Maia R, da Costa RG, Colaco B, Pires MJ, Colaco J, Ferreira R, Ginja M (2013) Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab Anim 42:217–224. doi:10.1038/laban.254

    Article  Google Scholar 

  20. 20.

    Pervin M, Golbar HM, Bondoc A, Izawa T, Kuwamura M, Yamate J (2016) Immunophenotypical characterization and influence on liver homeostasis of depleting and repopulating hepatic macrophages in rats injected with clodronate. Exp Toxicol Pathol 68:113–124. doi:10.1016/j.etp.2015.11.003

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Lim SY, Gordon-Weeks A, Allen D, Kersemans V, Beech J, Smart S, Muschel RJ (2015) Cd11b(+) myeloid cells support hepatic metastasis through down-regulation of angiopoietin-like 7 in cancer cells. Hepathology 62:521–533. doi:10.1002/hep.27838

    CAS  Article  Google Scholar 

  22. 22.

    Misharin AV, Morales-Nebreda L, Mutlu GM, Scott Budinger GR, Perlman H (2013) Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. Am J Respir Cell Mol Biol 49:503–510. doi:10.1165/rcmb.2013-0086MA

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Li H, Zhang GX, Chen Y, Xu H, Fitzgerald DC, Zhao Z, Rostami A (2008) CD11c+ CD11b+ dendritic cells play an important role in intravenous tolerance and the suppression of experimental autoimmune encephalomyelitis. J Immunol 181:2483–2493. doi:10.4049/jimmunol.181.4.2483

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Fritz JM, Tennis MA, Orlicky DJ, Lin H, Ju C, Redente EF, Choo KS, Staab TA, Bouchard RJ, Merrick DT, Malkinson AM, Dwyear-Niels LD (2014) Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Front Immunol 5:587. doi:10.3389/fimmu.2014.00587

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Gabrusiewicz K, Hossain MB, Cortes-Santiago N, Fan X, Kaminska B, Marini FC, Fuevo J, Gomez-Manzano C (2015) Macrophage ablation reduces M2-like populations and jeopardizes tumor growth in a MAFIA-based glioma model. Neoplasia 17:474–384. doi:10.1016/j.neo.2015.03.003

    Article  Google Scholar 

  26. 26.

    Torisu H, Ono M, Kiryu H, Furue M, Ohmoto Y, Nakayama J, Nishioka Y, Sone S, Kuwano M (2000) Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: possible involvement of TNFalpha and IL-1alpha. Int J Cancer 85:182–188. doi:10.1002/(SICI)1097-0215(20000115)85:2<182:AID-IJC6>3.0.CO;2-M

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Hussein MR (2006) Tumour-associated macrophages and melanoma tumourigenesis: integrating the complexity. Int J Exp Pathol 87:163–176. doi:10.1111/j.1365-2613.2006.00478.x

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Normann SJ, Cornelius J (1978) Concurrent depression of macrophage infiltration and systemic inflammation by progressive cancer growth. Cancer Res 38:3453–3459

    CAS  PubMed  Google Scholar 

  29. 29.

    Gordon S, Pluddemann A, Martinez Estrada F (2014) Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev 262:36–55. doi:10.1111/imr.12223

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Chanmee T, Ontong P, Konno K, Itano N (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6:1670–1690. doi:10.3390/cancers6031670

    CAS  Article  Google Scholar 

  31. 31.

    Tarantino G, Scalera A, Finelli C (2013) Liver-spleen axis: intersection between immunity, infections and metabolism. World J Gastroenterol 19:3534–3542. doi:10.3748/wjg.v19.i23.3534

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hey YY, O'Neil HC (2012) Murine spleen contains a diversity of myeloid and dendritic cells distinct in antigen presenting function. J Cell Mol Med 16:2611–2619. doi:10.1111/j.1582-4934.2012.01608.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Zhang S, Li ZF, Pan D, Huang C, Zhou R, Liu ZW (2009) Changes of splenic macrophage during the process of liver cancer induced by diethylnitrosamine in rats. Chin Med J 122:3043–3047

    CAS  PubMed  Google Scholar 

  34. 34.

    Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C, Ryan RJ, Iwamoto Y, Marinelli B, Gorbatov R, Forghani R, Novobrantseva TI, Koteliansky V, Figueiredo JL, Chen JW, Anderson DG, Nahrendorf M, Swirski FK, Weissleder R, Pittet MJ (2012) Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A 14:2491–2496. doi:10.1073/pnas.1113744109

    Article  Google Scholar 

  35. 35.

    Graversen JH, Svendsen P, Dagnæs-Hansen F, Dal J, Anton G, Etzerodt A, Petersen MD, Christensen PA, Møller HJ, Moestrup SK (2012) Targeting the hemoglobin scavenger receptor CD163 in macrophages highly increases the anti-inflammatory potency of dexamethasone. Mol Ther 20:1550–1558. doi:10.1038/mt.2012.103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Davies LC, Taylor PR (2015) Tissue-resident macrophages: then and now. Immunology 144:541–548. doi:10.1111/imm.12451

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Tripathi C, Tewari BN, Kanchan RK, Baghel KS, Nautiyal N, Shrivastava R, Kaur H, Bhatt ML, Bhadauria S (2014) Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin. Oncotarget 5:5350–5368. doi:10.18632/oncotarget.2110

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Duluc D, Corvaisier M, Blanchard S, Catala L, Descamps P, Gamelin E, Ponsoda S, Delneste Y, Hebbar M, Jeannin P (2009) Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. Int J Cancer 125:367–373. doi:10.1002/ijc.24401

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Kalish SV, Lyamina SV, Usanova EA, Manukhina EB, Larionov NP, Malyshev IY (2015) Macrophages reprogrammed in vitro towards the M1 phenotype and activated with LPS extend lifespan of mice with Ehrlich ascites carcinoma. Med Sci Monit basic res 21:226–234. doi:10.12659/MSMBR.895563

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Gupta R, Emens LA (2010) GM-CSF-secreting vaccines for solid tumors: moving forward. Discov Med 10:52–60

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Tugues S, Burkhard SH, Ohs I, Vrohlings M, Nussbaum K, Vom Berg J, Kulig P, Becher B (2015) New insights into IL-12-mediated tumor suppression. Cell Death Differ 22:237–246. doi:10.1038/cdd.2014.134

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125:5591–5596. doi:10.1242/jcs.116392

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Sousa S, Brion R, Lintunen M, Kronqvist P, Sandholm J, Mönkkönen J, Kellokumpu-Lehtinen PL, Lauttia S, Tynninen O, Joensuu H, Heymann D, Määttä JA (2015) Human breast cancer cells educate macrophages toward the M2 activation status. Breast Cancer Res 17:101. doi:10.1186/s13058-015-0621-0

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Kugathasan K, Roediger EK, Small CL, McCormick S, Yang P, Xing Z (2008) CD11c+ antigen presenting cells from the alveolar space, lung parenchyma and spleen differ in their phenotype and capabilities to activate naïve and antigen-primed T cells. BMC Immunol 9:48. doi:10.1186/1471-2172-9-48

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Heusinkveld M, van der Burg SH (2011) Identification and manipulation of tumor associated macrophages in human cancers. J Transl Med 9:216. doi:10.1186/1479-5876-9-216

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Sarvaiya PJ, Guo D, Ulasov I, Gabikian P, Lesniak MS (2013) Chemokines in tumor progression and metastasis. Oncotarget 12:2171–2185. doi:10.18632/oncotarget.1426

    Article  Google Scholar 

  47. 47.

    Aldinucci D, Colombatti A (2014) The inflammatory chemokine CCL5 and cancer progression. Mediat Inflamm. doi:10.1155/2014/292376

  48. 48.

    Gong Y, Chippada-Venkata UD, Oh WK (2014) Roles of matrix metalloproteinases and their natural inhibitors in prostate cancer progression. Cancers (Basel) 6:1298–1327. doi:10.3390/cancers6031298

    Article  Google Scholar 

  49. 49.

    Chuang JY, Yang WH, Chen HT, Huang CY, Tan TW, Lin YT, Hsu CJ, Fong YC, Tang CH (2009) CCL5/CCR5 axis promotes the motility of human oral cancer cells. J Cell Physiol 220:418–426. doi:10.1002/jcp.21783

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Long H, Xie R, Xiang T, Zhao Z, Lin S, Liang Z, Chen Z, Zhu B (2012) Autocrine CCL5 signaling promotes invasion and migration of CD133+ ovarian cancer stem-like cells via NF-κB-mediated MMP-9 upregulation. Stem Cells 30:2309–2319. doi:10.1002/stem.1194

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Shibuya M (2011) Involvement of Flt-1 (VEGF receptor-1) in cancer and preeclampsia. Proc Jpn Acad Ser B Phys Biol Sci 87:167–178. doi:10.2183/pjab.87.167

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL (2015) Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol 194:2985–2991. doi:10.4049/jimmunol.1403134

    Article  PubMed  Google Scholar 

Download references


This work was supported in part by JSPS KAKENHI grant number 22380173 to Yamate.

Author information



Corresponding author

Correspondence to J. Yamate.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bondoc, A., Golbar, H.M., Pervin, M. et al. Participation of Tumor-Associated Myeloid Cells in Progression of Amelanotic Melanoma (RMM Tumor Line) in F344 Rats, with Particular Reference to MHC Class II- and CD163-Expressing Cells. Cancer Microenvironment 10, 9–24 (2017).

Download citation


  • Amelanotic melanoma
  • Tumor-associated myeloid cell
  • Macrophage
  • Antigen-presenting cell
  • Cytokine