Cancer Microenvironment

, Volume 9, Issue 1, pp 1–11 | Cite as

Characterization of M1/M2 Tumour-Associated Macrophages (TAMs) and Th1/Th2 Cytokine Profiles in Patients with NSCLC

  • S. A. AlmatroodiEmail author
  • C. F. McDonald
  • I. A. Darby
  • D. S. Pouniotis
Original Article


Lung cancer is one of the most commonly reported cancers, and is known to be associated with a poor prognosis. The function of tumour-associated macrophages (TAMs) in lung cancer patients is multifaceted and the literature shows conflicting roles. (I) To analyze the Th1 and Th2 cytokine levels that contribute to the differentiation of M1 and M2 macrophage populations in the serum of patients with NSCLC versus non-cancer controls; and (II) To characterize the M1 and M2 macrophage populations within TAMs in different subtypes of NSCLC compared to non-tumour tissue. The Th1 and Th2 cytokine levels were analyzed in serum using the Bio-Plex assay. In addition, TAMs subsets from non-tumour and tumour tissues were analyzed using immunohistochemistry (IHC). The level of IL-1β, IL-4, IL-6 and IL-8 was found to be increased in the serum of patients with large cell carcinoma but not in other NSCLC subtypes compared to non-cancer controls. In addition, the expression of CD68 and M2 marker CD163 was found to be increased (P ≤ 0.0001) in all NSCLC subtypes compared to non-tumour tissues. In contrast, the expression of iNOS (M1 marker) was decreased in the tumour tissue of patients with adenocarcinoma (P ≤ 0.01) and squamous carcinoma (P ≤ 0.05) but not in large cell carcinoma compared to non-tumour tissue. The results of this study indicate that NSCLC might have the ability to alter phenotype within the lung tumour areas in the local environment (TAMs) but not in the bloodstream in the systemic environment (serum) except for large cell carcinoma.


Lung cancer Lung tissue Tumour-associated macrophages M1 macrophages M2 macrophages 



This work was supported by the Institute for Breathing and Sleep project Grant and the School of Medical Sciences, RMIT University Grant Scheme.

Ethical Approval

Human Ethics approval was received from RMIT University Human Research Ethics Committee ASEHAPP 15-13 and the informed consent of all participants was obtained.


  1. 1.
    Shih J-Y, Yuan A, Chen JJ-W, Yang P-C (2006) Tumor-associated macrophage: its role in cancer invasion and metastasis. J Cancer Mol 2(3):101–106Google Scholar
  2. 2.
    Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66(2):605–612. doi: 10.1158/0008-5472.CAN-05-4005 CrossRefPubMedGoogle Scholar
  3. 3.
    Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555CrossRefPubMedGoogle Scholar
  4. 4.
    Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW (2006) Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80(6):1183–1196, 10.1189/jlb.0905495 CrossRefPubMedGoogle Scholar
  5. 5.
    Lamagna C, Aurrand-Lions M, Imhof BA (2006) Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol 80(4):705–713. doi: 10.1189/jlb.1105656 CrossRefPubMedGoogle Scholar
  6. 6.
    Quatromoni JG, Eruslanov E (2012) Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am J Transl Res 4(4):376–389PubMedPubMedCentralGoogle Scholar
  7. 7.
    Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686CrossRefPubMedGoogle Scholar
  8. 8.
    Lopez-Gonzalez JS, Avila-Moreno F, Prado-Garcia H, Aguilar-Cazares D, Mandoki JJ, Meneses-Flores M (2007) Lung carcinomas decrease the number of monocytes/macrophages (CD14+ cells) that produce TNF-[alpha]. Clin Immunol 122(3):323–329CrossRefPubMedGoogle Scholar
  9. 9.
    Ohri CM, Shikotra A, Green RH, Waller DA, Bradding P (2009) Macrophages within NSCLC tumour islets are predominantly of a cytotoxic M1 phenotype associated with extended survival. Eur Respir J 33(1):118–126. doi: 10.1183/09031936.00065708 CrossRefPubMedGoogle Scholar
  10. 10.
    Redente EF, Dwyer-Nield LD, Merrick DT, Raina K, Agarwal R, Pao W, Rice PL, Shroyer KR, Malkinson AM (2010) Tumor progression stage and anatomical site regulate tumor-associated macrophage and bone marrow-derived monocyte polarization. Am J Pathol 176(6):2972–2985. doi: 10.2353/ajpath.2010.090879 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O’Neill A, Mier J, Ochoa AC (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65(8):3044–3048PubMedGoogle Scholar
  12. 12.
    Chang CI, Liao JC, Kuo L (2001) Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res 61(3):1100–1106PubMedGoogle Scholar
  13. 13.
    Biswas SK, Sica A, Lewis CE (2008) Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol 180(4):2011–2017CrossRefPubMedGoogle Scholar
  14. 14.
    Gorrin-Rivas MJ, Arii S, Mori A, Takeda Y, Mizumoto M, Furutani M, Imamura M (2000) Implications of human macrophage metalloelastase and vascular endothelial growth factor gene expression in angiogenesis of hepatocellular carcinoma. Ann Surg 231(1):67–73CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Edin S, Wikberg ML, Dahlin AM, Rutegard J, Oberg A, Oldenborg PA, Palmqvist R (2012) The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One 7(10), e47045. doi: 10.1371/journal.pone.0047045 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Edin S, Wikberg ML, Oldenborg PA, Palmqvist R (2013) Macrophages: good guys in colorectal cancer. OncoImmunology 2(2), e23038. doi: 10.4161/onci.23038 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795. doi: 10.1172/jci59643 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    UyBico SJ, Wu CC, Suh RD, Le NH, Brown K, Krishnam MS (2010) Lung cancer staging essentials: the new TNM staging system and potential imaging pitfalls. Radiographics 30(5):1163–1181. doi: 10.1148/rg.305095166 CrossRefPubMedGoogle Scholar
  19. 19.
    Welsh TJ, Green RH, Richardson D, Waller DA, O’Byrne KJ, Bradding P (2005) Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol 23(35):8959–8967. doi: 10.1200/jco.2005.01.4910 CrossRefGoogle Scholar
  20. 20.
    Wang R, Zhang J, Chen S, Lu M, Luo X, Yao S, Liu S, Qin Y, Chen H (2011) Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression. Lung Cancer (Amsterdam, Netherlands) 74(2):188–196. doi: 10.1016/j.lungcan.2011.04.009 CrossRefGoogle Scholar
  21. 21.
    Takanami I, Takeuchi K, Kodaira S (1999) Tumor-associated macrophage infiltration in pulmonary adenocarcinoma: association with angiogenesis and poor prognosis. Oncology 57(2):138–142CrossRefPubMedGoogle Scholar
  22. 22.
    Ohtaki Y, Ishii G, Nagai K, Ashimine S, Kuwata T, Hishida T, Nishimura M, Yoshida J, Takeyoshi I, Ochiai A (2010) Stromal macrophage expressing CD204 is associated with tumor aggressiveness in lung adenocarcinoma. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 5(10):1507–1515. doi: 10.1097/JTO.0b013e3181eba692 Google Scholar
  23. 23.
    Zeni E, Mazzetti L, Miotto D, Lo Cascio N, Maestrelli P, Querzoli P, Pedriali M, De Rosa E, Fabbri LM, Mapp CE, Boschetto P (2007) Macrophage expression of interleukin-10 is a prognostic factor in nonsmall cell lung cancer. Eur Respir J 30(4):627–632. doi: 10.1183/09031936.00129306 CrossRefPubMedGoogle Scholar
  24. 24.
    Ohri CM, Shikotra A, Green RH, Waller DA, Bradding P (2011) The tissue microlocalisation and cellular expression of CD163, VEGF, HLA-DR, iNOS, and MRP 8/14 is correlated to clinical outcome in NSCLC. PLoS One 6(7), e21874. doi: 10.1371/journal.pone.0021874 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bingle L, Brown N, Lewis C (2002) The role of tumour‐associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196(3):254–265CrossRefPubMedGoogle Scholar
  26. 26.
    Toomey D, Smyth G, Condron C, Kelly J, Byrne AM, Kay E, Conroy RM, Broe P, Bouchier-Hayes D (2003) Infiltrating immune cells, but not tumour cells, express FasL in non-small cell lung cancer: No association with prognosis identified in 3-year follow-up. Int J Cancer J Int Cancer 103(3):408–412. doi: 10.1002/ijc.10836 CrossRefGoogle Scholar
  27. 27.
    Tataroglu C, Kargi A, Ozkal S, Esrefoglu N, Akkoclu A (2004) Association of macrophages, mast cells and eosinophil leukocytes with angiogenesis and tumor stage in non-small cell lung carcinomas (NSCLC). Lung Cancer (Amsterdam, Netherlands) 43(1):47–54CrossRefGoogle Scholar
  28. 28.
    Ma J, Liu L, Che G, Yu N, Dai F, You Z (2010) The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer 10:112. doi: 10.1186/1471-2407-10-112 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, Bottazzi B, Doni A, Vincenzo B, Pasqualini F, Vago L, Nebuloni M, Mantovani A, Sica A (2006) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107(5):2112–2122. doi: 10.1182/blood-2005-01-0428 CrossRefPubMedGoogle Scholar
  30. 30.
    Dinapoli MR, Calderon CL, Lopez DM (1996) The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduce expression of the inducible nitric oxide synthase gene. J Exp Med 183(4):1323–1329CrossRefPubMedGoogle Scholar
  31. 31.
    Scagliotti GV, Parikh P, von Pawel J, Biesma B, Vansteenkiste J, Manegold C, Serwatowski P, Gatzemeier U, Digumarti R, Zukin M, Lee JS, Mellemgaard A, Park K, Patil S, Rolski J, Goksel T, de Marinis F, Simms L, Sugarman KP, Gandara D (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol 26(21):3543–3551. doi: 10.1200/jco.2007.15.0375 CrossRefGoogle Scholar
  32. 32.
    Zhang B, Yao G, Zhang Y, Gao J, Yang B, Rao Z, Gao J (2011) M2-polarized tumor-associated macrophages are associated with poor prognoses resulting from accelerated lymphangiogenesis in lung adenocarcinoma. Clinics 66(11):1879–1886. doi: 10.1590/S1807-59322011001100006 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chung FT, Lee KY, Wang CW, Heh CC, Chan YF, Chen HW, Kuo CH, Feng PH, Lin TY, Wang CH, Chou CL, Chen HC, Lin SM, Kuo HP (2012) Tumor-associated macrophages correlate with response to epidermal growth factor receptor-tyrosine kinase inhibitors in advanced non-small cell lung cancer. Int J Cancer J Int Cancer 131(3):E227–E235. doi: 10.1002/ijc.27403 CrossRefGoogle Scholar
  34. 34.
    Belardelli F, Ferrantini M (2002) Cytokines as a link between innate and adaptive antitumor immunity. Trends Immunol 23(4):201–208CrossRefPubMedGoogle Scholar
  35. 35.
    Matanic D, Beg-Zec Z, Stojanovic D, Matakoric N, Flego V, Milevoj-Ribic F (2003) Cytokines in patients with lung cancer. Scand J Immunol 57(2):173–178CrossRefPubMedGoogle Scholar
  36. 36.
    Romagnani S (1995) Biology of human TH1 and TH2 cells. J Clin Immunol 15(3):121–129CrossRefPubMedGoogle Scholar
  37. 37.
    Romagnani S (1996) Th1 and Th2 in human diseases. Clin Immunol Immunopathol 80(3 Pt 1):225–235CrossRefPubMedGoogle Scholar
  38. 38.
    Gursel G, Gokcora N, Elbeg S, Samurkasoglu B, Ekim N (1995) Tumor necrosis factor-alpha (TNF-alpha) in pleural fluids. Tuber Lung Dis 76(4):370–371CrossRefPubMedGoogle Scholar
  39. 39.
    Brooks N, Stojanovska L, Grant P, Apostolopoulos V, McDonald CF, Pouniotis DS (2012) Characterization of blood monocyte phenotype in patients with endometrial cancer. Int J Gynecol Cancer 22(9):1500–1508. doi: 10.1097/IGC.0b013e3182249273 PubMedGoogle Scholar
  40. 40.
    Takahashi H, Ogata H, Nishigaki R, Broide DH, Karin M (2010) Tobacco smoke promotes lung tumorigenesis by triggering IKKbeta- and JNK1-dependent inflammation. Cancer Cell 17(1):89–97. doi: 10.1016/j.ccr.2009.12.008 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yi H, Cho HJ, Cho SM, Jo K, Park JA, Kim NH, Amidon GL, Kim JS, Shin HC (2012) Blockade of interleukin-6 receptor suppresses the proliferation of H460 lung cancer stem cells. Int J Oncol 41(1):310–316. doi: 10.3892/ijo.2012.1447 PubMedGoogle Scholar
  42. 42.
    De Vita F, Orditura M, Auriemma A, Infusino S, Roscigno A, Catalano G (1998) Serum levels of interleukin-6 as a prognostic factor in advanced non-small cell lung cancer. Oncol Rep 5(3):649–652PubMedGoogle Scholar
  43. 43.
    Crohns M, Saarelainen S, Laine S, Poussa T, Alho H, Kellokumpu-Lehtinen P (2010) Cytokines in bronchoalveolar lavage fluid and serum of lung cancer patients during radiotherapy—association of interleukin-8 and VEGF with survival. Cytokine 50(1):30–36. doi: 10.1016/j.cyto.2009.11.017 CrossRefPubMedGoogle Scholar
  44. 44.
    Juarez E, Nunez C, Sada E, Ellner JJ, Schwander SK, Torres M (2010) Differential expression of toll-like receptors on human alveolar macrophages and autologous peripheral monocytes. Respir Res 11:2CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14(21):6735–6741. doi: 10.1158/1078-0432.CCR-07-4843 CrossRefPubMedGoogle Scholar
  46. 46.
    Apte RN, Dotan S, Elkabets M, White MR, Reich E, Carmi Y, Song X, Dvozkin T, Krelin Y, Voronov E (2006) The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev 25(3):387–408. doi: 10.1007/s10555-006-9004-4 CrossRefPubMedGoogle Scholar
  47. 47.
    Chen JJ, Yao PL, Yuan A, Hong TM, Shun CT, Kuo ML, Lee YC, Yang PC (2003) Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res 9(2):729–737PubMedGoogle Scholar
  48. 48.
    Millar HJ, Nemeth JA, McCabe FL, Pikounis B, Wickstrom E (2008) Circulating human interleukin-8 as an indicator of cancer progression in a nude rat orthotopic human non-small cell lung carcinoma model. Cancer Epidemiol Biomarkers Prev 17(8):2180–2187. doi: 10.1158/1055-9965.EPI-07-2915 CrossRefPubMedGoogle Scholar
  49. 49.
    Culig Z (2011) Cytokine disbalance in common human cancers. Biochim Biophys Acta 1813(2):308–314. doi: 10.1016/j.bbamcr.2010.12.010 CrossRefPubMedGoogle Scholar
  50. 50.
    Albulescu R, Codrici E, Popescu ID, Mihai S, Necula LG, Petrescu D, Teodoru M, Tanase CP (2013) Cytokine patterns in brain tumour progression. Mediat Inflamm 2013:7. doi: 10.1155/2013/979748 CrossRefGoogle Scholar
  51. 51.
    Pellegrini P, Contasta I, Del Beato T, Ciccone F, Berghella AM (2011) Gender-specific cytokine pathways, targets, and biomarkers for the switch from health to adenoma and colorectal cancer. Clin Dev Immunol 819724. doi: 10.1155/2011/819724
  52. 52.
    Schuurs AH, Verheul HA (1990) Effects of gender and sex steroids on the immune response. J Steroid Biochem 35(2):157–172CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • S. A. Almatroodi
    • 1
    • 3
    Email author
  • C. F. McDonald
    • 2
  • I. A. Darby
    • 1
  • D. S. Pouniotis
    • 1
  1. 1.Cancer & Tissue Repair Laboratory, School of Medical SciencesRMIT UniversityBundooraAustralia
  2. 2.Institute for Breathing & SleepAustin HealthHeidelbergAustralia
  3. 3.Applied Medical Sciences CollegeQassim UniversityBuraidahSaudi Arabia

Personalised recommendations