Cancer Microenvironment

, Volume 7, Issue 1–2, pp 71–78 | Cite as

Extracellular Matrix Protein Laminin Induces Matrix Metalloproteinase-9 in Human Breast Cancer Cell Line MCF-7

  • Sekhar Pal
  • Shuvojit Moulik
  • Anindita Dutta
  • Amitava ChatterjeeEmail author
Original Paper


Studies on interaction of tumor cells with extracellular matrix (ECM) components showed increased extracellular protease activity mediated by the family of matrix metalloproteinases (MMPs). Here we studied the effect of human breast cancer cell line MCF-7-laminin (LM) interaction on MMPs and the underlying signaling pathways. Culturing of MCF-7 cells on LM coated surface upregulated MMP-9 expression as well as reduced tissue inhibitor of metalloproteinases-1 (TIMP-1) expression. LM induced MMP-9 expression is abrogated by the blockade of α2 integrin. Inhibitor studies indicate possible involvement of phosphatidyl-inositol-3-kinase (PI3K), extracellular signal regulated kinase (ERK) and nuclear factor-kappaB (NF-κB) in LM induced signaling. LM treatment also enhanced phosphorylation of FAK (focal adhesion kinase), PI3K, ERK; nuclear translocation of ERK, pERK, NF-κB and cell migration. Our findings indicate that, binding of MCF-7 cells to LM, possibly via α2β1 integrin, induces signaling involving FAK, PI3K, ERK, NF-κB followed by upregulation of MMP-9 and cell migration.


MCF-7 Signaling ECM Laminin Integrin MMP-9 



The authors wish to express their thanks to Director, Chittaranjan National Cancer Institute, for academic, financial and infrastructural support.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Richie RC, Swanson JO (2003) Breast cancer: a review of the literature. J Insur Med 35(2):85–101PubMedGoogle Scholar
  2. 2.
    Weigelt B, Peterse JL, van’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5(8):591–602. doi: 10.1038/nrc1670 PubMedCrossRefGoogle Scholar
  3. 3.
    Munshi HG, Stack MS (2006) Reciprocal interactions between adhesion receptor signaling and MMP regulation. Cancer Metastasis Rev 25(1):45–56. doi: 10.1007/s10555-006-7888-7 PubMedCrossRefGoogle Scholar
  4. 4.
    Turpeenniemi-Hujanen T, Thorgeirsson UP, Rao CN, Liotta LA (1986) Laminin increases the release of type IV collagenase from malignant cells. J Biol Chem 261(4):1883–1889PubMedGoogle Scholar
  5. 5.
    Timpl R, Brown JC (1996) Supramolecular assembly of basement membranes. Bioessays 18(2):123–132. doi: 10.1002/bies.950180208 PubMedCrossRefGoogle Scholar
  6. 6.
    Ra HJ, Parks WC (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26(8):587–596. doi: 10.1016/j.matbio.2007.07.001 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Pal S, Ganguly KK, Moulik S, Chatterjee A (2012) Modulation of MMPs by cell surface integrin receptor alpha5beta1. Anticancer Agents Med Chem 12(7):726–732PubMedCrossRefGoogle Scholar
  8. 8.
    Das S, Banerji A, Frei E, Chatterjee A (2008) Rapid expression and activation of MMP-2 and MMP-9 upon exposure of human breast cancer cells (MCF-7) to fibronectin in serum free medium. Life Sci 82(9–10):467–476. doi: 10.1016/j.lfs.2007.12.013 PubMedCrossRefGoogle Scholar
  9. 9.
    Stack S, Gray RD, Pizzo SV (1991) Modulation of plasminogen activation and type IV collagenase activity by a synthetic peptide derived from the laminin A chain. Biochemistry 30(8):2073–2077PubMedCrossRefGoogle Scholar
  10. 10.
    Terranova VP, Williams JE, Liotta LA, Martin GR (1984) Modulation of the metastatic activity of melanoma cells by laminin and fibronectin. Science 226(4677):982–985PubMedCrossRefGoogle Scholar
  11. 11.
    Maity G, Fahreen S, Banerji A, Roy Choudhury P, Sen T, Dutta A, Chatterjee A (2010) Fibronectin-integrin mediated signaling in human cervical cancer cells (SiHa). Mol Cell Biochem 336(1–2):65–74. doi: 10.1007/s11010-009-0256-5 PubMedCrossRefGoogle Scholar
  12. 12.
    Sen T, Dutta A, Maity G, Chatterjee A (2010) Fibronectin induces matrix metalloproteinase-9 (MMP-9) in human laryngeal carcinoma cells by involving multiple signaling pathways. Biochimie 92(10):1422–1434. doi: 10.1016/j.biochi.2010.07.005 PubMedCrossRefGoogle Scholar
  13. 13.
    Givant-Horwitz V, Davidson B, Reich R (2005) Laminin-induced signaling in tumor cells. Cancer Lett 223(1):1–10. doi: 10.1016/j.canlet.2004.08.030 PubMedCrossRefGoogle Scholar
  14. 14.
    Ekblom P, Lonai P, Talts JF (2003) Expression and biological role of laminin-1. Matrix Biol 22(1):35–47PubMedCrossRefGoogle Scholar
  15. 15.
    Sasaki T, Fassler R, Hohenester E (2004) Laminin: the crux of basement membrane assembly. J Cell Biol 164(7):959–963. doi: 10.1083/jcb.200401058 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Maity G, Sen T, Chatterjee A (2011) Laminin induces matrix metalloproteinase-9 expression and activation in human cervical cancer cell line (SiHa). J Cancer Res Clin Oncol 137(2):347–357. doi: 10.1007/s00432-010-0892-x PubMedCrossRefGoogle Scholar
  17. 17.
    Sen T, Moulik S, Dutta A, Choudhury PR, Banerji A, Das S, Roy M, Chatterjee A (2009) Multifunctional effect of epigallocatechin-3-gallate (EGCG) in downregulation of gelatinase-A (MMP-2) in human breast cancer cell line MCF-7. Life Sci 84(7–8):194–204. doi: 10.1016/j.lfs.2008.11.018 PubMedCrossRefGoogle Scholar
  18. 18.
    Dutta A, Sen T, Chatterjee A (2010) Culture of K562 human myeloid leukemia cells in presence of fibronectin expresses and secretes MMP-9 in serum-free culture medium. Int J Clin Exp Pathol 3(3):288–302PubMedCentralPubMedGoogle Scholar
  19. 19.
    Ganguly KK, Sen T, Pal S, Biswas J, Chatterjee A (2012) Studies on Focal Adhesion Kinase in human breast cancer cell MDA-MB-231. Adv Biol Chem 2:29–42CrossRefGoogle Scholar
  20. 20.
    Chen LM, Bailey D, Fernandez-Valle C (2000) Association of beta 1 integrin with focal adhesion kinase and paxillin in differentiating Schwann cells. J Neurosci 20(10):3776–3784PubMedGoogle Scholar
  21. 21.
    Sein TT, Thant AA, Hiraiwa Y, Amin AR, Sohara Y, Liu Y, Matsuda S, Yamamoto T, Hamaguchi M (2000) A role for FAK in the Concanavalin A-dependent secretion of matrix metalloproteinase-2 and −9. Oncogene 19(48):5539–5542. doi: 10.1038/sj.onc.1203932 PubMedCrossRefGoogle Scholar
  22. 22.
    Gilmore AP, Romer LH (1996) Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol Biol Cell 7(8):1209–1224PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6(1):56–68. doi: 10.1038/nrm1549 PubMedCrossRefGoogle Scholar
  24. 24.
    Ganguly KK, Pal S, Moulik S, Chatterjee A (2013) Integrins and metastasis. Cell Adh Migr 7(3):251–261. doi: 10.4161/cam.23840 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Cuevas BD, Lu Y, Mao M, Zhang J, LaPushin R, Siminovitch K, Mills GB (2001) Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase. J Biol Chem 276(29):27455–27461. doi: 10.1074/jbc.M100556200 PubMedCrossRefGoogle Scholar
  26. 26.
    Chen JS, Wang Q, Fu XH, Huang XH, Chen XL, Cao LQ, Chen LZ, Tan HX, Li W, Bi J, Zhang LJ (2009) Involvement of PI3K/PTEN/AKT/mTOR pathway in invasion and metastasis in hepatocellular carcinoma: Association with MMP-9. Hepatol Res 39(2):177–186. doi: 10.1111/j.1872-034X.2008.00449.x PubMedCrossRefGoogle Scholar
  27. 27.
    Chen HC, Appeddu PA, Isoda H, Guan JL (1996) Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J Biol Chem 271(42):26329–26334PubMedCrossRefGoogle Scholar
  28. 28.
    O-charoenrat P, Wongkajornsilp A, Rhys-Evans PH, Eccles SA (2004) Signaling pathways required for matrix metalloproteinase-9 induction by betacellulin in head-and-neck squamous carcinoma cells. Int J Cancer 111(2):174–183. doi: 10.1002/ijc.20228 PubMedCrossRefGoogle Scholar
  29. 29.
    Freitas VM, Vilas-Boas VF, Pimenta DC, Loureiro V, Juliano MA, Carvalho MR, Pinheiro JJ, Camargo AC, Moriscot AS, Hoffman MP, Jaeger RG (2007) SIKVAV, a laminin alpha1-derived peptide, interacts with integrins and increases protease activity of a human salivary gland adenoid cystic carcinoma cell line through the ERK 1/2 signaling pathway. Am J Pathol 171(1):124–138PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Kane LP, Shapiro VS, Stokoe D, Weiss A (1999) Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 9(11):601–604PubMedCrossRefGoogle Scholar
  31. 31.
    Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2(4):301–310. doi: 10.1038/nrc780 PubMedCrossRefGoogle Scholar
  32. 32.
    Nakanishi C, Toi M (2005) Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5(4):297–309. doi: 10.1038/nrc1588 PubMedCrossRefGoogle Scholar
  33. 33.
    Pal S, Ganguly KK, Chatterjee A (2013) Extracellular matrix protein fibronectin induces matrix metalloproteinases in human prostate adenocarcinoma cells PC-3. Cell Commun Adhes 20(5):105–114. doi: 10.3109/15419061.2013.833193 PubMedCrossRefGoogle Scholar
  34. 34.
    Tai KY, Shieh YS, Lee CS, Shiah SG, Wu CW (2008) Axl promotes cell invasion by inducing MMP-9 activity through activation of NF-kappaB and Brg-1. Oncogene 27(29):4044–4055. doi: 10.1038/onc.2008.57 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sekhar Pal
    • 1
  • Shuvojit Moulik
    • 1
  • Anindita Dutta
    • 1
  • Amitava Chatterjee
    • 1
    • 2
    Email author
  1. 1.Department of Receptor Biology & Tumor MetastasisChittaranjan National Cancer InstituteKolkataIndia
  2. 2.KolkataIndia

Personalised recommendations