Skip to main content

Advertisement

Log in

Exosomes in Cancer Microenvironment and Beyond: have we Overlooked these Extracellular Messengers?

  • Original Paper
  • Published:
Cancer Microenvironment

Abstract

Cancer is a complex organ whose behavior is not only influenced by genetic and epigenetic changes in cancer cells but also by stromal cells, local extracellular matrix and specific tissue architecture. Intercellular communications within the cancer microenvironment are critical to coordinate the assembly of multiple cell types for an amalgamated form and function of a cancer. Exosomes are small membrane vesicles with an endosome origin that are released by cells into the extracellular environment. They carry a cargo of proteins, lipids, and nucleic acids and transfer their cargo to recipient cells and altering the recipient cells’ biochemical composition, signaling pathways, and gene regulation. Exosomes can thus serve as extracellular messengers mediating cell-cell communication. Both cancer cells and stromal cells release exosomes not only into the cancer microenvironment but also into the circulation. In this review, we summarize the research done so far on cancer-derived exosomes and assess their roles as extracellular messengers facilitating cancer progression and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Trams EG, Lauter CJ, Salem N, Heine U (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophy Acta 645(1):63–70

    Article  CAS  Google Scholar 

  2. Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97(2):329–339

    Article  PubMed  CAS  Google Scholar 

  3. Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33(3):967–978

    Article  PubMed  CAS  Google Scholar 

  4. Pan BT, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101(3):942–948

    Article  PubMed  CAS  Google Scholar 

  5. Johnstone RM, Bianchini A, Teng K (1989) Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood 74(5):1844–1851

    PubMed  CAS  Google Scholar 

  6. Orr L, Adam M, Johnstone RM (1987) Externalization of membrane-bound activities during sheep reticulocyte maturation is temperature and ATP dependent. Biochem Cell Biol 65(12):1080–1090

    Article  PubMed  CAS  Google Scholar 

  7. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3 22

  8. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56(2):293–304

    Article  PubMed  CAS  Google Scholar 

  9. Mathivanan RJSaS (2012) Extracellular microvesicles: the need for internationally recognised nomenclature and stringent purification criteria. J Proteomics Bioinform 5(2):ii

  10. Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113(Pt 19):3365–3374

    PubMed  CAS  Google Scholar 

  11. Bobrie A, Colombo M, Raposo G, Thery C (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12(12):1659–1668

    Article  PubMed  CAS  Google Scholar 

  12. Mathivanan S, Simpson RJ (2009) ExoCarta: A compendium of exosomal proteins and RNA. Proteomics 9(21):4997–5000

    Article  PubMed  CAS  Google Scholar 

  13. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30

    Article  PubMed  CAS  Google Scholar 

  14. Pfeffer SR (2010) Two Rabs for exosome release. Nat Cell Biol 12(1):3–4

    Article  PubMed  CAS  Google Scholar 

  15. Thery C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 147(3):599–610

    Article  PubMed  CAS  Google Scholar 

  16. Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, Mitchell DA, Bigner DD (2009) Proteomic and immunologic analyses of brain tumor exosomes. FASEB J 23(5):1541–1557

    Article  PubMed  CAS  Google Scholar 

  17. Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, Multhoff G (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65(12):5238–5247

    Article  PubMed  CAS  Google Scholar 

  18. Muntasell A, Berger AC, Roche PA (2007) T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes. EMBO J 26(19):4263–4272

    Article  PubMed  CAS  Google Scholar 

  19. Janiszewski M, Do Carmo AO, Pedro MA, Silva E, Knobel E, Laurindo FRM (2004) Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity: A novel vascular redox pathway. Criti Care Med 32(3):818–825

    Article  CAS  Google Scholar 

  20. Wolfers J, Lozier A, Raposo G, Regnault A, Théry C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7(3):297–303

    Article  PubMed  CAS  Google Scholar 

  21. Lee HM, Choi E-J, Kim JH, Kim TD, Kim Y-K, Kang C, Gho YS (2010) A membranous form of ICAM-1 on exosomes efficiently blocks leukocyte adhesion to activated endothelial cells. Biochem Biophy Res Comm 397(2):251–256

    Article  CAS  Google Scholar 

  22. Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ (2010) Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 190(6):1079–1091

    Article  PubMed  CAS  Google Scholar 

  23. Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C (2010) Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123(Pt 10):1603–1611

    Article  PubMed  CAS  Google Scholar 

  24. Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, D’Souza-Schorey C (2009) ARF6–regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19(22):1875–1885

    Article  PubMed  CAS  Google Scholar 

  25. Hugel B, Martinez MC, Kunzelmann C, Freyssinet JM (2005) Membrane microparticles: two sides of the coin. Physiology 20:22–27

    Article  PubMed  CAS  Google Scholar 

  26. Lima LG, Chammas R, Monteiro RQ, Moreira ME, Barcinski MA (2009) Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett 283(2):168–175

    Article  PubMed  CAS  Google Scholar 

  27. Morelli AE, Larregina AT, Shufesky WJ, Sullivan MLG, Stolz DB, Papworth GD, Zahorchak AF, Logar AJ, Wang Z, Watkins SC, Falo LD, Thomson AW (2004) Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104(10):3257–3266

    Article  PubMed  CAS  Google Scholar 

  28. Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, Zhou Q, Sui SF (2010) Cellular internalization of exosomes occurs through phagocytosis. Traffic 11(5):675–687

    Article  PubMed  CAS  Google Scholar 

  29. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, Coscia C, Iessi E, Logozzi M, Molinari A, Colone M, Tatti M, Sargiacomo M, Fais S (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284(49):34211–34222

    Article  PubMed  CAS  Google Scholar 

  30. Fitzner D, Schnaars M, van Rossum D, Krishnamoorthy G, Dibaj P, Bakhti M, Regen T, Hanisch UK, Simons M (2011) Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci 124(Pt 3):447–458

    Article  PubMed  CAS  Google Scholar 

  31. Segura E, Guerin C, Hogg N, Amigorena S, Thery C (2007) CD8+ dendritic cells use LFA-1 to capture MHC- peptide complexes from exosomes in vivo. J Immunol 179(3):1489–1496

    PubMed  CAS  Google Scholar 

  32. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  PubMed  CAS  Google Scholar 

  33. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619–624

    Article  PubMed  CAS  Google Scholar 

  34. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476

    Article  PubMed  CAS  Google Scholar 

  35. Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17(3):320–329

    Article  PubMed  CAS  Google Scholar 

  36. Kenny PA, Lee GY, Bissell MJ (2007) Targeting the tumor microenvironment. Front Biosci 12:3468–3474

    Article  PubMed  CAS  Google Scholar 

  37. Leibovici J, Itzhaki O, Huszar M, Sinai J (2011) The tumor microenvironment: part 1. Immunotherapy 3(11):1367–1384

    Article  PubMed  CAS  Google Scholar 

  38. De Milito A, Marino ML, Fais S (2012) A rationale for the use of proton pump inhibitors as antineoplastic agents. Curr Pharm Des 18(10):1395–1406

    PubMed  Google Scholar 

  39. Khan S, Aspe JR, Asumen MG, Almaguel F, Odumosu O, Acevedo-Martinez S, De Leon M, Langridge WH, Wall NR (2009) Extracellular, cell-permeable survivin inhibits apoptosis while promoting proliferative and metastatic potential. Br J Cancer 100(7):1073–1086

    Article  PubMed  CAS  Google Scholar 

  40. Keller S, Konig AK, Marme F, Runz S, Wolterink S, Koensgen D, Mustea A, Sehouli J, Altevogt P (2009) Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett 278(1):73–81

    Article  PubMed  CAS  Google Scholar 

  41. Higginbotham JN, Demory Beckler M, Gephart JD, Franklin JL, Bogatcheva G, Kremers GJ, Piston DW, Ayers GD, McConnell RE, Tyska MJ, Coffey RJ (2011) Amphiregulin exosomes increase cancer cell invasion. Curr Biol 21(9):779–786

    Article  PubMed  CAS  Google Scholar 

  42. Deng Z, Cheng Z, Xiang X, Yan J, Zhuang X, Liu C, Jiang H, Ju S, Zhang L, Grizzle W, Mobley J, Roman J, Miller D, Zhang HG (2012) Tumor cell cross talk with tumor-associated leukocytes leads to induction of tumor exosomal fibronectin and promotes tumor progression. Am J Pathol 180(1):390–398

    Article  PubMed  CAS  Google Scholar 

  43. Hood JL, Pan H, Lanza GM, Wickline SA (2009) Paracrine induction of endothelium by tumor exosomes. Lab Invest 89(11):1317–1328

    Article  PubMed  Google Scholar 

  44. Hong BS, Cho JH, Kim H, Choi EJ, Rho S, Kim J, Kim JH, Choi DS, Kim YK, Hwang D, Gho YS (2009) Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics 10:556

    Article  PubMed  Google Scholar 

  45. Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci U S A 106(10):3794–3799

    Article  PubMed  Google Scholar 

  46. Gesierich S, Berezovskiy I, Ryschich E, Zoller M (2006) Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res 66(14):7083–7094

    Article  PubMed  CAS  Google Scholar 

  47. Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT, Zoller M (2010) Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 70(4):1668–1678

    Article  PubMed  CAS  Google Scholar 

  48. Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, Lim SK, Sze SK (2010) Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics 9(6):1085–1099

    Article  PubMed  CAS  Google Scholar 

  49. Sheldon H, Heikamp E, Turley H, Dragovic R, Thomas P, Oon CE, Leek R, Edelmann M, Kessler B, Sainson RC, Sargent I, Li JL, Harris AL (2010) New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood 116(13):2385–2394

    Article  PubMed  CAS  Google Scholar 

  50. Webber J, Steadman R, Mason MD, Tabi Z, Clayton A (2010) Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 70(23):9621–9630

    Article  PubMed  CAS  Google Scholar 

  51. Runz S, Keller S, Rupp C, Stoeck A, Issa Y, Koensgen D, Mustea A, Sehouli J, Kristiansen G, Altevogt P (2007) Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol 107(3):563–571

    Article  PubMed  CAS  Google Scholar 

  52. Dolo V, D’Ascenzo S, Violini S, Pompucci L, Festuccia C, Ginestra A, Vittorelli ML, Canevari S, Pavan A (1999) Matrix-degrading proteinases are shed in membrane vesicles by ovarian cancer cells in vivo and in vitro. Clin Exp Metastasis 17(2):131–140

    Article  PubMed  CAS  Google Scholar 

  53. Dolo V, Ginestra A, Cassara D, Ghersi G, Nagase H, Vittorelli ML (1999) Shed membrane vesicles and selective localization of gelatinases and MMP-9/TIMP-1 complexes. Ann NY Acad Sci 878:497–499

    Article  PubMed  CAS  Google Scholar 

  54. Graves LE, Ariztia EV, Navari JR, Matzel HJ, Stack MS, Fishman DA (2004) Proinvasive properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res 64(19):7045–7049

    Article  PubMed  CAS  Google Scholar 

  55. Gutwein P, Stoeck A, Riedle S, Gast D, Runz S, Condon TP, Marme A, Phong MC, Linderkamp O, Skorokhod A, Altevogt P (2005) Cleavage of L1 in exosomes and apoptotic membrane vesicles released from ovarian carcinoma cells. Clin Cancer Res 11(7):2492–2501

    Article  PubMed  CAS  Google Scholar 

  56. Stoeck A, Keller S, Riedle S, Sanderson MP, Runz S, Le Naour F, Gutwein P, Ludwig A, Rubinstein E, Altevogt P (2006) A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem J 393(Pt 3):609–618

    PubMed  CAS  Google Scholar 

  57. Jung T, Castellana D, Klingbeil P, Cuesta Hernandez I, Vitacolonna M, Orlicky DJ, Roffler SR, Brodt P, Zoller M (2009) CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia 11(10):1093–1105

    PubMed  CAS  Google Scholar 

  58. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78(9):838–848

    Article  PubMed  CAS  Google Scholar 

  59. Zamarron BF, Chen W (2011) Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 7(5):651–658

    Article  PubMed  CAS  Google Scholar 

  60. Kees T, Egeblad M (2011) Innate immune cells in breast cancer—from villains to heroes? J Mammary Gland Biol Neoplasia 16(3):189–203

    Article  PubMed  Google Scholar 

  61. Bremnes RM, Al-Shibli K, Donnem T, Sirera R, Al-Saad S, Andersen S, Stenvold H, Camps C, Busund LT (2011) The role of tumor-infiltrating immune cells and chronic inflammation at the tumor site on cancer development, progression, and prognosis: emphasis on non-small cell lung cancer. J Thorac Oncol 6(4):824–833

    Article  PubMed  Google Scholar 

  62. Viaud S, Thery C, Ploix S, Tursz T, Lapierre V, Lantz O, Zitvogel L, Chaput N (2010) Dendritic cell-derived exosomes for cancer immunotherapy: what’s next? Cancer Res 70(4):1281–1285

    Article  PubMed  CAS  Google Scholar 

  63. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, Ratajczak MZ (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113(5):752–760

    Article  PubMed  CAS  Google Scholar 

  64. Janowska-Wieczorek A, Marquez-Curtis LA, Wysoczynski M, Ratajczak MZ (2006) Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion 46(7):1199–1209

    Article  PubMed  Google Scholar 

  65. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B, Camussi G (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110(7):2440–2448

    Article  PubMed  CAS  Google Scholar 

  66. Campello E, Spiezia L, Radu CM, Bulato C, Castelli M, Gavasso S, Simioni P (2011) Endothelial, platelet, and tissue factor-bearing microparticles in cancer patients with and without venous thromboembolism. Thromb Res 127(5):473–477

    Article  PubMed  CAS  Google Scholar 

  67. Admyre C, Telemo E, Almqvist N, Lötvall J, Lahesmaa R, Scheynius A, Gabrielsson S (2008) Exosomes—nanovesicles with possible roles in allergic inflammation. Allergy 63(4):404–408

    Article  PubMed  CAS  Google Scholar 

  68. Kim SH, Bianco NR, Shufesky WJ, Morelli AE, Robbins PD (2007) MHC class II + exosomes in plasma suppress inflammation in an antigen-specific and Fas ligand/Fas-dependent manner. J Immuno 179(4):2235–2241

    CAS  Google Scholar 

  69. Taylor DD, Gercel-Taylor C (2011) Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol 33(5):441–454

    Article  PubMed  CAS  Google Scholar 

  70. Clayton A, Mason MD (2009) Exosomes in tumour immunity. Curr Oncol 16(3):46–49

    Article  PubMed  CAS  Google Scholar 

  71. Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, Rivoltini L (2008) Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15(1):80–88

    Article  PubMed  CAS  Google Scholar 

  72. Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z (2008) Human tumor-derived exosomes down- modulate NKG2D expression. J Immuno 180(11):7249–7258

    CAS  Google Scholar 

  73. Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z (2007) Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res 67(15):7458–7466

    Article  PubMed  CAS  Google Scholar 

  74. Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL (2009) Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immuno 183(6):3720–3730

    Article  CAS  Google Scholar 

  75. Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL (2010) Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One 5(7):e11469–e11469

    Article  PubMed  Google Scholar 

  76. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immuno 9(3):162–174

    Article  CAS  Google Scholar 

  77. Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, Cheng Z, Shah SV, Wang GJ, Zhang L, Grizzle WE, Mobley J, Zhang HG (2009) Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer 124(11):2621–2633

    Article  PubMed  CAS  Google Scholar 

  78. Yang C, Kim S-H, Bianco NR, Robbins PD (2011) Tumor-derived exosomes confer antigen-specific immunosuppression in a murine delayed-type hypersensitivity model. PLoS One 6(8):e22517–e22517

    Article  PubMed  CAS  Google Scholar 

  79. Battke C, Ruiss R, Welsch U, Wimberger P, Lang S, Jochum S, Zeidler R (2011) Tumour exosomes inhibit binding of tumour-reactive antibodies to tumour cells and reduce ADCC. Cancer Immuno Immunothe: CII 60(5):639–648

    Article  CAS  Google Scholar 

  80. Pant S, Hilton H, Burczynski ME (2011) The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem Pharmacology

  81. Taylor DD, Homesley HD, Doellgast GJ (1980) Binding of specific peroxidase-labeled antibody to placental- type phosphatase on tumor-derived membrane fragments. Cancer Res 40(11):4064–4069

    PubMed  CAS  Google Scholar 

  82. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21

    Article  PubMed  CAS  Google Scholar 

  83. Rabinowits G, Gerçel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clinical lung cancer 10(1):42–46

    Article  PubMed  CAS  Google Scholar 

  84. Welton JL, Khanna S, Giles PJ, Brennan P, Brewis IA, Staffurth J, Mason MD, Clayton A (2010) Proteomics analysis of bladder cancer exosomes. Mol Cell Proteomics: MCP 9(6):1324–1338

    Article  PubMed  CAS  Google Scholar 

  85. Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefield XO, Widmark A (2009) Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer 100(10):1603–1607

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruowen Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, R., Tan, E., Sharghi-Namini, S. et al. Exosomes in Cancer Microenvironment and Beyond: have we Overlooked these Extracellular Messengers?. Cancer Microenvironment 5, 323–332 (2012). https://doi.org/10.1007/s12307-012-0110-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-012-0110-2

Keywords

Navigation