Skip to main content

Advertisement

Log in

Roles of Bone Marrow Cells in Skeletal Metastases: No Longer Bystanders

  • Original Paper
  • Published:
Cancer Microenvironment

Abstract

Bone serves one of the most congenial metastatic microenvironments for multiple types of solid tumors, but its role in this process remains under-explored. Among many cell populations constituting the bone and bone marrow microenvironment, osteoblasts (originated from mesenchymal stem cells) and osteoclasts (originated from hematopoietic stem cells) have been the main research focus for pro-tumorigenic roles. Recently, increasing evidence further elucidates that hematopoietic lineage cells as well as stromal cells in the bone marrow mediate distinct but critical functions in tumor growth, metastasis, angiogenesis and apoptosis in the bone microenvironment. This review article summarizes the key evidence describing differential roles of bone marrow cells, including hematopoietic stem cells (HSCs), megakaryocytes, macrophages and myeloid-derived suppressor cells in the development of metastatic bone lesions. HSCs promote tumor growth by switching on angiogenesis, but at the same time compete with metastatic tumor cells for occupancy of osteoblastic niche. Megakaryocytes negatively regulate the extravasating tumor cells by inducing apoptosis and suppressing proliferation. Macrophages and myeloid cells have pro-tumorigenic roles in general, suggesting a similar effect in the bone marrow. Hematopoietic and stromal cell populations in the bone marrow, previously considered as simple by-standers in the context of tumor metastasis, have distinct and active roles in promoting or suppressing tumor growth and metastasis in bone. Further investigation on the extended roles of bone marrow cells will help formulate better approaches to treatment through improved understanding of the metastatic bone microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Canc 3(6):453–458

    Article  CAS  Google Scholar 

  2. Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Canc Res 70(14):5649–5669. doi:10.1158/0008-5472.CAN-10-1040

    Article  CAS  Google Scholar 

  3. Fidler IJ (2002) Critical determinants of metastasis. Semin Canc Biol 12(2):89–96. doi:10.1006/scbi.2001.0416

    Article  Google Scholar 

  4. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Canc Metastasis Rev 8(2):98–101

    CAS  Google Scholar 

  5. Ewing J (1928) Neoplastic diseases; a treatise on tumors. 3d ed rev. and enl., with 546 illustrations. edn. W.B. Saunders, Philadelphia, London

  6. Geldof AA (1997) Models for cancer skeletal metastasis: a reappraisal of Batson’s plexus. Anticancer Res 17(3A):1535–1539

    PubMed  CAS  Google Scholar 

  7. Fidler IJ, Kripke ML (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science 197(4306):893–895

    Article  PubMed  CAS  Google Scholar 

  8. Hart IR, Fidler IJ (1980) Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Canc Res 40(7):2281–2287

    CAS  Google Scholar 

  9. Tarin D, Price JE, Kettlewell MG, Souter RG, Vass AC, Crossley B (1984) Clinicopathological observations on metastasis in man studied in patients treated with peritoneovenous shunts. Br Med J (Clin Res Ed) 288(6419):749–751

    Article  CAS  Google Scholar 

  10. Tarin D, Price JE, Kettlewell MG, Souter RG, Vass AC, Crossley B (1984) Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Canc Res 44(8):3584–3592

    CAS  Google Scholar 

  11. Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R, Abbruzzese JL (2006) Metastatic patterns in adenocarcinoma. Cancer 106(7):1624–1633. doi:10.1002/cncr.21778

    Article  PubMed  Google Scholar 

  12. Bubendorf L, Schopfer A, Wagner U, Sauter G, Moch H, Willi N, Gasser TC, Mihatsch MJ (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31(5):578–583

    Article  PubMed  CAS  Google Scholar 

  13. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Canc 2(8):584–593. doi:10.1038/nrc867

    Article  CAS  Google Scholar 

  14. Roodman GD (2004) Mechanisms of bone metastasis. New Engl J Med 350(16):1655–1664. doi:10.1056/NEJMra030831

    Article  PubMed  CAS  Google Scholar 

  15. Rubin MA, Putzi M, Mucci N, Smith DC, Wojno K, Korenchuk S, Pienta KJ (2000) Rapid (“warm”) autopsy study for procurement of metastatic prostate cancer. Clin Canc Res 6(3):1038–1045

    CAS  Google Scholar 

  16. Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Canc 11(6):411–425. doi:10.1038/nrc3055

    Article  CAS  Google Scholar 

  17. Casimiro S, Guise TA, Chirgwin J (2009) The critical role of the bone microenvironment in cancer metastases. Mol Cell Endocrinol 310(1–2):71–81. doi:10.1016/j.mce.2009.07.004

    Article  PubMed  CAS  Google Scholar 

  18. Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, Yoneda T, Mundy GR (1996) Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Investig 98(7):1544–1549. doi:10.1172/JCI118947

    Article  PubMed  CAS  Google Scholar 

  19. Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massague J, Mundy GR, Guise TA (1999) TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Investig 103(2):197–206. doi:10.1172/JCI3523

    Article  PubMed  CAS  Google Scholar 

  20. Li X, Loberg R, Liao J, Ying C, Snyder LA, Pienta KJ, McCauley LK (2009) A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Canc Res 69(4):1685–1692. doi:10.1158/0008-5472.CAN-08-2164

    Article  CAS  Google Scholar 

  21. Liao J, Li X, Koh AJ, Berry JE, Thudi N, Rosol TJ, Pienta KJ, McCauley LK (2008) Tumor expressed PTHrP facilitates prostate cancer-induced osteoblastic lesions. Int J Canc 123(10):2267–2278. doi:10.1002/ijc.23602

    Article  CAS  Google Scholar 

  22. Liao J, McCauley LK (2006) Skeletal metastasis: established and emerging roles of parathyroid hormone related protein (PTHrP). Canc Metastasis Rev 25(4):559–571. doi:10.1007/s10555-006-9033-z

    Article  CAS  Google Scholar 

  23. Bergfeld SA, DeClerck YA (2010) Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Canc Metastasis Rev 29(2):249–261. doi:10.1007/s10555-010-9222-7

    Article  Google Scholar 

  24. Ara T, Declerck YA (2010) Interleukin-6 in bone metastasis and cancer progression. Eur J Canc 46(7):1223–1231. doi:10.1016/j.ejca.2010.02.026

    Article  CAS  Google Scholar 

  25. Paul WE (1999) Fundamental immunology, 4th edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  26. Schermer S (1967) The blood morphology of laboratory animals, 3rd edn. Davis, Philadelphia

    Google Scholar 

  27. Travlos GS (2006) Normal structure, function, and histology of the bone marrow. Toxicol Pathol 34(5):548–565. doi:10.1080/01926230600939856

    Article  PubMed  Google Scholar 

  28. Shirota T, Tavassoli M (1991) Cyclophosphamide-induced alterations of bone marrow endothelium: implications in homing of marrow cells after transplantation. Exp Hematol 19(5):369–373

    PubMed  CAS  Google Scholar 

  29. Shirota T, Tavassoli M (1992) Alterations of bone marrow sinus endothelium induced by ionizing irradiation: implications in the homing of intravenously transplanted marrow cells. Blood Cell 18(2):197–214

    CAS  Google Scholar 

  30. Weiss L, Geduldig U (1991) Barrier cells: stromal regulation of hematopoiesis and blood cell release in normal and stressed murine bone marrow. Blood 78(4):975–990

    PubMed  CAS  Google Scholar 

  31. Tavassoli M, Hardy CL (1990) Molecular basis of homing of intravenously transplanted stem cells to the marrow. Blood 76(6):1059–1070

    PubMed  CAS  Google Scholar 

  32. Mazo IB, Gutierrez-Ramos JC, Frenette PS, Hynes RO, Wagner DD, von Andrian UH (1998) Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J Exp Med 188(3):465–474

    Article  PubMed  CAS  Google Scholar 

  33. Frenette PS, Subbarao S, Mazo IB, von Andrian UH, Wagner DD (1998) Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Proc Natl Acad Sci U S A 95(24):14423–14428

    Article  PubMed  CAS  Google Scholar 

  34. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283(5403):845–848

    Article  PubMed  CAS  Google Scholar 

  35. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56. doi:10.1038/35065016

    Article  PubMed  CAS  Google Scholar 

  36. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Canc Res 62(6):1832–1837

    CAS  Google Scholar 

  37. Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, Taichman RS, Pienta KJ, Wang J (2010) CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Canc Metastasis Rev 29(4):709–722. doi:10.1007/s10555-010-9256-x

    Article  CAS  Google Scholar 

  38. Jung Y, Wang J, Song J, Shiozawa Y, Havens A, Wang Z, Sun YX, Emerson SG, Krebsbach PH, Taichman RS (2007) Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood 110(1):82–90. doi:10.1182/blood-2006-05-021352

    Article  PubMed  CAS  Google Scholar 

  39. Shiozawa Y, Havens AM, Jung Y, Ziegler AM, Pedersen EA, Wang J, Lu G, Roodman GD, Loberg RD, Pienta KJ, Taichman RS (2008) Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J Cell Biochem 105(2):370–380. doi:10.1002/jcb.21835

    Article  PubMed  Google Scholar 

  40. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM, Pienta MJ, Song J, Wang J, Loberg RD, Krebsbach PH, Pienta KJ, Taichman RS (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Investig. doi:10.1172/JCI43414

  41. Okamoto R, Ueno M, Yamada Y, Takahashi N, Sano H, Suda T, Takakura N (2005) Hematopoietic cells regulate the angiogenic switch during tumorigenesis. Blood 105(7):2757–2763. doi:10.1182/blood-2004-08-3317

    Article  PubMed  CAS  Google Scholar 

  42. Schneider A, Kalikin LM, Mattos AC, Keller ET, Allen MJ, Pienta KJ, McCauley LK (2005) Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology 146(4):1727–1736. doi:10.1210/en.2004-1211

    Article  PubMed  CAS  Google Scholar 

  43. Lichtman MA, Chamberlain JK, Simon W, Santillo PA (1978) Parasinusoidal location of megakaryocytes in marrow: a determinant of platelet release. Am J Hematol 4(4):303–312

    Article  PubMed  CAS  Google Scholar 

  44. Li X, Koh AJ, Wang Z, Soki FN, Park SI, Pienta KJ, McCauley LK (2011) Inhibitory effects of megakaryocytic cells in prostate cancer skeletal metastasis. J Bone Miner Res 26(1):125–134. doi:10.1002/jbmr.204

    Article  PubMed  CAS  Google Scholar 

  45. Kacena MA, Gundberg CM, Horowitz MC (2006) A reciprocal regulatory interaction between megakaryocytes, bone cells, and hematopoietic stem cells. Bone 39(5):978–984. doi:10.1016/j.bone.2006.05.019

    Article  PubMed  CAS  Google Scholar 

  46. Kacena MA, Nelson T, Clough ME, Lee SK, Lorenzo JA, Gundberg CM, Horowitz MC (2006) Megakaryocyte-mediated inhibition of osteoclast development. Bone 39(5):991–999. doi:10.1016/j.bone.2006.05.004

    Article  PubMed  CAS  Google Scholar 

  47. Kacena MA, Shivdasani RA, Wilson K, Xi Y, Troiano N, Nazarian A, Gundberg CM, Bouxsein ML, Lorenzo JA, Horowitz MC (2004) Megakaryocyte-osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF-E2. J Bone Miner Res 19(4):652–660. doi:10.1359/JBMR.0301254

    Article  PubMed  CAS  Google Scholar 

  48. Bord S, Frith E, Ireland DC, Scott MA, Craig JI, Compston JE (2005) Megakaryocytes modulate osteoblast synthesis of type-l collagen, osteoprotegerin, and RANKL. Bone 36(5):812–819. doi:10.1016/j.bone.2004.12.006

    Article  PubMed  CAS  Google Scholar 

  49. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846. doi:10.1038/nature02040

    Article  PubMed  CAS  Google Scholar 

  50. Udagawa N, Takahashi N, Jimi E, Matsuzaki K, Tsurukai T, Itoh K, Nakagawa N, Yasuda H, Goto M, Tsuda E, Higashio K, Gillespie MT, Martin TJ, Suda T (1999) Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand. Bone 25(5):517–523

    Article  PubMed  CAS  Google Scholar 

  51. Ahmed N, Khokher MA, Hassan HT (1999) Cytokine-induced expansion of human CD34+ stem/progenitor and CD34 + CD41+ early megakaryocytic marrow cells cultured on normal osteoblasts. Stem Cell 17(2):92–99. doi:10.1002/stem.170092

    Article  CAS  Google Scholar 

  52. Roato I, D'Amelio P, Gorassini E, Grimaldi A, Bonello L, Fiori C, Delsedime L, Tizzani A, De Libero A, Isaia G, Ferracini R (2008) Osteoclasts are active in bone forming metastases of prostate cancer patients. PLoS One 3(11):e3627. doi:10.1371/journal.pone.0003627

    Article  PubMed  CAS  Google Scholar 

  53. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. doi:10.1038/nature10144

    Article  PubMed  CAS  Google Scholar 

  54. Nieswandt B, Hafner M, Echtenacher B, Mannel DN (1999) Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Canc Res 59(6):1295–1300

    CAS  Google Scholar 

  55. Boucharaba A, Serre CM, Gres S, Saulnier-Blache JS, Bordet JC, Guglielmi J, Clezardin P, Peyruchaud O (2004) Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Investig 114(12):1714–1725. doi:10.1172/JCI22123

    PubMed  CAS  Google Scholar 

  56. Gupta GP, Massague J (2004) Platelets and metastasis revisited: a novel fatty link. J Clin Investig 114(12):1691–1693. doi:10.1172/JCI23823

    PubMed  CAS  Google Scholar 

  57. Mizutani K, Sud S, McGregor NA, Martinovski G, Rice BT, Craig MJ, Varsos ZS, Roca H, Pienta KJ (2009) The chemokine CCL2 increases prostate tumor growth and bone metastasis through macrophage and osteoclast recruitment. Neoplasia 11(11):1235–1242

    PubMed  CAS  Google Scholar 

  58. Loberg RD, Ying C, Craig M, Yan L, Snyder LA, Pienta KJ (2007) CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia 9(7):556–562

    Article  PubMed  CAS  Google Scholar 

  59. Halin S, Rudolfsson SH, Van Rooijen N, Bergh A (2009) Extratumoral macrophages promote tumor and vascular growth in an orthotopic rat prostate tumor model. Neoplasia 11(2):177–186

    PubMed  CAS  Google Scholar 

  60. Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86(5):1065–1073. doi:10.1189/jlb.0609385

    Article  PubMed  CAS  Google Scholar 

  61. Hiraoka K, Zenmyo M, Watari K, Iguchi H, Fotovati A, Kimura YN, Hosoi F, Shoda T, Nagata K, Osada H, Ono M, Kuwano M (2008) Inhibition of bone and muscle metastases of lung cancer cells by a decrease in the number of monocytes/macrophages. Canc Sci 99(8):1595–1602. doi:10.1111/j.1349-7006.2008.00880.x

    Article  CAS  Google Scholar 

  62. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196(3):254–265. doi:10.1002/path.1027

    Article  PubMed  CAS  Google Scholar 

  63. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, Rimoldi M, Biswas SK, Allavena P, Mantovani A (2008) Macrophage polarization in tumour progression. Semin Canc Biol 18(5):349–355. doi:10.1016/j.semcancer.2008.03.004

    Article  CAS  Google Scholar 

  64. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545. doi:10.1016/S0140-6736(00)04046-0

    Article  PubMed  CAS  Google Scholar 

  65. Loberg RD, Ying C, Craig M, Day LL, Sargent E, Neeley C, Wojno K, Snyder LA, Yan L, Pienta KJ (2007) Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Canc Res 67(19):9417–9424. doi:10.1158/0008-5472.CAN-07-1286

    Article  CAS  Google Scholar 

  66. Roca H, Varsos Z, Pienta KJ (2008) CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation. J Biol Chem 283(36):25057–25073. doi:10.1074/jbc.M801073200

    Article  PubMed  CAS  Google Scholar 

  67. Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ (2009) CCL2 and interleukin-6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem 284(49):34342–34354. doi:10.1074/jbc.M109.042671

    Article  PubMed  CAS  Google Scholar 

  68. Zhang J, Lu Y, Pienta KJ (2010) Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. J Natl Canc Inst 102(8):522–528. doi:10.1093/jnci/djq044

    Article  CAS  Google Scholar 

  69. Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN, Pollard JW (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Canc Res 66(23):11238–11246. doi:10.1158/0008-5472.CAN-06-1278

    Article  CAS  Google Scholar 

  70. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Canc Res 56(20):4625–4629

    CAS  Google Scholar 

  71. Hildenbrand R, Dilger I, Horlin A, Stutte HJ (1995) Urokinase and macrophages in tumour angiogenesis. Br J Canc 72(4):818–823

    Article  CAS  Google Scholar 

  72. Miles DW, Happerfield LC, Naylor MS, Bobrow LG, Rubens RD, Balkwill FR (1994) Expression of tumour necrosis factor (TNF alpha) and its receptors in benign and malignant breast tissue. Int J Canc 56(6):777–782

    Article  CAS  Google Scholar 

  73. Jung YJ, Isaacs JS, Lee S, Trepel J, Neckers L (2003) IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J 17(14):2115–2117. doi:10.1096/fj.03-0329fje

    PubMed  CAS  Google Scholar 

  74. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350. doi:10.1146/annurev.immunol.15.1.323

    Article  PubMed  CAS  Google Scholar 

  75. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Canc 4(1):71–78. doi:10.1038/nrc1256

    Article  CAS  Google Scholar 

  76. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51. doi:10.1016/j.cell.2010.03.014

    Article  PubMed  CAS  Google Scholar 

  77. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Canc Res 66(2):605–612. doi:10.1158/0008-5472.CAN-05-4005

    Article  CAS  Google Scholar 

  78. Alexander K, Chang M, Maylin E, Kohler T, Muller R, Wu A, Van Rooijen N, Sweet M, Hume D, Raggatt L, Pettit A (2011) Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 26(7):1517–1532. doi:10.1002/jbmr.354

    Article  PubMed  CAS  Google Scholar 

  79. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181(2):1232–1244

    PubMed  CAS  Google Scholar 

  80. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. New Engl J Med 315(26):1650–1659. doi:10.1056/NEJM198612253152606

    Article  PubMed  CAS  Google Scholar 

  81. Zumsteg A, Christofori G (2009) Corrupt policemen: inflammatory cells promote tumor angiogenesis. Curr Opin Oncol 21(1):60–70. doi:10.1097/CCO.0b013e32831bed7e

    Article  PubMed  Google Scholar 

  82. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Canc 8(8):618–631. doi:10.1038/nrc2444

    Article  CAS  Google Scholar 

  83. Coffelt SB, Lewis CE, Naldini L, Brown JM, Ferrara N, De Palma M (2010) Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol 176(4):1564–1576. doi:10.2353/ajpath.2010.090786

    Article  PubMed  Google Scholar 

  84. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13(7):828–835. doi:10.1038/nm1609

    Article  PubMed  CAS  Google Scholar 

  85. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi:10.1038/nri2506

    Article  PubMed  CAS  Google Scholar 

  86. Nagaraj S, Gabrilovich DI (2008) Tumor escape mechanism governed by myeloid-derived suppressor cells. Canc Res 68(8):2561–2563. doi:10.1158/0008-5472.CAN-07-6229

    Article  CAS  Google Scholar 

  87. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr + CD11b + cells in tumor-bearing host directly promotes tumor angiogenesis. Canc Cell 6(4):409–421. doi:10.1016/j.ccr.2004.08.031

    Article  CAS  Google Scholar 

  88. Yang L, Edwards CM, Mundy GR (2010) Gr-1 + CD11b + myeloid-derived suppressor cells (MDSCs): formidable partners in tumor metastasis. J Bone Miner Res 25(8):1701–1706. doi:10.1002/jbmr.154

    Article  PubMed  CAS  Google Scholar 

  89. Kim SJ, Kim JS, Papadopoulos J, Wook Kim S, Maya M, Zhang F, He J, Fan D, Langley R, Fidler IJ (2009) Circulating monocytes expressing CD31: implications for acute and chronic angiogenesis. Am J Pathol 174(5):1972–1980. doi:10.2353/ajpath.2009.080819

    Article  PubMed  CAS  Google Scholar 

  90. Shojaei F, Zhong C, Wu X, Yu L, Ferrara N (2008) Role of myeloid cells in tumor angiogenesis and growth. Trends Cell Biol 18(8):372–378. doi:10.1016/j.tcb.2008.06.003

    Article  PubMed  CAS  Google Scholar 

  91. Ahn GO, Brown JM (2008) Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Canc Cell 13(3):193–205. doi:10.1016/j.ccr.2007.11.032

    Article  CAS  Google Scholar 

  92. Taichman NS, Young S, Cruchley AT, Taylor P, Paleolog E (1997) Human neutrophils secrete vascular endothelial growth factor. J Leukoc Biol 62(3):397–400

    PubMed  CAS  Google Scholar 

  93. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Canc Cell 13(1):23–35. doi:10.1016/j.ccr.2007.12.004

    Article  CAS  Google Scholar 

  94. ASBMR 29th Annual Meeting (2007) J Bone Miner Res 22(S1):s2–s51. doi:10.1002/jbmr.5650221402

    Google Scholar 

  95. Zhuang J, Yang L, Lwin ST, Edwards CM, Edwards JR, Mundy GR (2008) Osteoclasts in myeloma are derived from Gr-1 + CD11b + myeloid immune suppressor cells of the bone marrow niche in vivo. ASH Annu Meet Abstr 112(11):736

    Google Scholar 

  96. Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP (2007) Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Canc Res 67(23):11438–11446. doi:10.1158/0008-5472.CAN-07-1882

    Article  CAS  Google Scholar 

  97. Shiozawa Y, Jung Y, Ziegler AM, Pedersen EA, Wang J, Wang Z, Song J, Lee CH, Sud S, Pienta KJ, Krebsbach PH, Taichman RS (2010) Erythropoietin couples hematopoiesis with bone formation. PLoS One 5(5):e10853. doi:10.1371/journal.pone.0010853

    Article  PubMed  CAS  Google Scholar 

  98. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460(7252):259–263. doi:10.1038/nature08099

    Article  PubMed  CAS  Google Scholar 

  99. Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Canc Metastasis Rev 25(4):521–529. doi:10.1007/s10555-006-9036-9

    Article  Google Scholar 

  100. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827. doi:10.1038/nature04186

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Department of Defense Prostate Cancer Research Program Grants W81XWH-10-1-0546 (Serk In Park) and W81XWH-08-1-0037 (Laurie K. McCauley); and the National Cancer Institute Program Project Grant P01CA093900 (Laurie K. McCauley). The authors thank Janice E. Berry, Amy J. Koh and Matthew Eber for their assistance with preparation of this manuscript.

Conflict of Interest

The authors declare no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie K. McCauley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.I., Soki, F.N. & McCauley, L.K. Roles of Bone Marrow Cells in Skeletal Metastases: No Longer Bystanders. Cancer Microenvironment 4, 237–246 (2011). https://doi.org/10.1007/s12307-011-0081-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-011-0081-8

Keywords

Navigation