Skip to main content

Advertisement

Log in

Transforming Growth Factor-β1 (TGF-β1) Driven Epithelial to Mesenchymal Transition (EMT) is Accentuated by Tumour Necrosis Factor α (TNFα) via Crosstalk Between the SMAD and NF-κB Pathways

  • Original Paper
  • Published:
Cancer Microenvironment

Abstract

Epithelial to mesenchymal transition (EMT) is a process by which an epithelial cell alters its phenotype to that of a mesenchymal cell and plays a critical role in embryonic development, tumour invasion and metastasis and tissue fibrosis. Transforming growth factor-β1 (TGF-β1) continues to be regarded as the key growth factor involved in driving EMT however recently tumour necrosis factor α (TNFα) has been demonstrated to accentuate TGF-β1 driven EMT. In this study we investigate how various signalling pathways contribute to this accentuated effect. A549 cells were treated with TGF-β1 (10 ng/ml), TNFα (20 ng/ml) or a combination of both for 72 h and EMT assessed. The effect of selective inhibition of the SMAD, MAPK and NF-κB pathways on EMT was assessed. A549 cells treated with TGF-β1 downregulate the expression of epithelial markers, increase the expression of mesenchymal markers, secrete matrix-metalloproteinases and become invasive. Significantly, TGF-β1 driven EMT is accentuated by co-treatment with TNFα. SMAD 3 inhibition attenuated TGF-β1 driven EMT but has no effect on the accentuation effect of TNFα. However, inhibiting IKKβ blocked both TGF-β1 driven EMT and the accentuating action of TNFα. Inhibiting p38 and ERK signalling had no effect on EMT. TNFα accentuates TGF-β1 driven EMT in A549 cells via a SMAD 2/3 independent mechanism involving the NF-κB pathway independent of p38 and ERK 1/2 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890

    Article  PubMed  CAS  Google Scholar 

  2. Jain R, Shaul PW, Borok Z, Willis BC (2007) Endothelin-1 induces alveolar epithelial-mesenchymal transition through endothelin type A receptor-mediated production of TGF-beta1. Am J Respir Cell Mol Biol 37(1):38–47

    Article  PubMed  CAS  Google Scholar 

  3. Borthwick LA, Parker SM, Brougham KA, Johnson GE, Gorowiec MR, Ward C, Lordan JL, Corris PA, Kirby JA, Fisher AJ (2009) Epithelial to mesenchymal transition (EMT) and airway remodelling after human lung transplantation. Thorax 64(9):770–777

    Article  PubMed  CAS  Google Scholar 

  4. Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112(12):1776–1784

    PubMed  CAS  Google Scholar 

  5. Pagan R, Martin I, Llobera M, Vilaro S (1997) Epithelial-mesenchymal transition of cultured rat neonatal hepatocytes is differentially regulated in response to epidermal growth factor and dimethyl sulfoxide. Hepatology (Baltimore, Md) 25(3):598–606

    Article  CAS  Google Scholar 

  6. Ahmed N, Maines-Bandiera S, Quinn MA, Unger WG, Dedhar S, Auersperg N (2006) Molecular pathways regulating EGF-induced epithelio-mesenchymal transition in human ovarian surface epithelium. Am J Physiol 290(6):C1532–C1542

    Article  CAS  Google Scholar 

  7. Yang J, Dai C, Liu Y (2005) A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition. J Am Soc Nephrol 16(1):68–78

    Article  PubMed  CAS  Google Scholar 

  8. Strutz F, Zeisberg M, Ziyadeh FN, Yang CQ, Kalluri R, Muller GA, Neilson EG (2002) Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int 61(5):1714–1728

    Article  PubMed  CAS  Google Scholar 

  9. Kelly M, Kolb M, Bonniaud P, Gauldie J (2003) Re-evaluation of fibrogenic cytokines in lung fibrosis. Curr Pharm Des 9(1):39–49

    Article  PubMed  CAS  Google Scholar 

  10. Flanders KC (2004) Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 85(2):47–64

    Article  PubMed  CAS  Google Scholar 

  11. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584

    Article  PubMed  CAS  Google Scholar 

  12. Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A (2005) TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 16(4):1987–2002

    Article  PubMed  CAS  Google Scholar 

  13. Moustakas A, Heldin CH (2005) Non-Smad TGF-beta signals. J Cell Sci 118(Pt 16):3573–3584

    Article  PubMed  CAS  Google Scholar 

  14. Javelaud D, Mauviel A (2005) Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene 24(37):5742–5750

    Article  PubMed  CAS  Google Scholar 

  15. Chuang MJ, Sun KH, Tang SJ, Deng MW, Wu YH, Sung JS, Cha TL, Sun GH (2008) Tumor-derived tumor necrosis factor-alpha promotes progression and epithelial-mesenchymal transition in renal cell carcinoma cells. Cancer Sci 99(5):905–913

    Article  PubMed  CAS  Google Scholar 

  16. Grund EM, Kagan D, Tran CA, Zeitvogel A, Starzinski-Powitz A, Nataraja S, Palmer SS (2008) Tumor necrosis factor-alpha regulates inflammatory and mesenchymal responses via mitogen-activated protein kinase kinase, p38, and nuclear factor kappaB in human endometriotic epithelial cells. Mol Pharmacol 73(5):1394–1404

    Article  PubMed  CAS  Google Scholar 

  17. Camara J, Jarai G. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha. Fibrogenesis Tissue Repair 3(1):2

  18. Kasai H, Allen JT, Mason RM, Kamimura T, Zhang Z (2005) TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res 6:56

    Article  PubMed  Google Scholar 

  19. Yamauchi Y, Kohyama T, Takizawa H, Kamitani S, Desaki M, Takami K, Kawasaki S, Kato J, Nagase T. Tumor necrosis factor-alpha enhances both epithelial-mesenchymal transition and cell contraction induced in A549 human alveolar epithelial cells by transforming growth factor-beta1. Exp Lung Res 36(1):12–24

  20. Liu X (2008) Inflammatory cytokines augments TGF-beta1-induced epithelial-mesenchymal transition in A549 cells by up-regulating TbetaR-I. Cell Motil Cytoskeleton 65(12):935–944

    Article  PubMed  CAS  Google Scholar 

  21. Borthwick LA, McIlroy EI, Gorowiec MR, Brodlie M, Johnson GE, Ward C, Lordan JL, Corris PA, Kirby JA, Fisher AJ. Inflammation and epithelial to mesenchymal transition in lung transplant recipients: role in dysregulated epithelial wound repair. Am J Transplant 10(3):498–509

  22. Bates RC, Mercurio AM (2003) Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell 14(5):1790–1800

    Article  PubMed  CAS  Google Scholar 

  23. Borthwick LA, Sunny SS, Oliphant V, Perry J, Brodlie M, Johnson GE, Ward C, Gould K, Corris PA, De Soyza A, Fisher AJ. Pseudomonas aeruginosa accentuates epithelial to mesenchymal transition in the airway. Eur Respir J

  24. De Soyza A, Ellis CD, Khan CM, Corris PA, Demarco de Hormaeche R (2004) Burkholderia cenocepacia lipopolysaccharide, lipid A, and proinflammatory activity. Am J Respir Crit Care Med 170(1):70–77

    Article  PubMed  Google Scholar 

  25. Yu L, Hebert MC, Zhang YE (2002) TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J 21(14):3749–3759

    Article  PubMed  CAS  Google Scholar 

  26. Vietor I, Schwenger P, Li W, Schlessinger J, Vilcek J (1993) Tumor necrosis factor-induced activation and increased tyrosine phosphorylation of mitogen-activated protein (MAP) kinase in human fibroblasts. J Biol Chem 268(25):18994–18999

    PubMed  CAS  Google Scholar 

  27. Saile B, Matthes N, El Armouche H, Neubauer K, Ramadori G (2001) The bcl, NFkappaB and p53/p21WAF1 systems are involved in spontaneous apoptosis and in the anti-apoptotic effect of TGF-beta or TNF-alpha on activated hepatic stellate cells. Eur J Cell Biol 80(8):554–561

    Article  PubMed  CAS  Google Scholar 

  28. Gingery A, Bradley EW, Pederson L, Ruan M, Horwood NJ, Oursler MJ (2008) TGF-beta coordinately activates TAK1/MEK/AKT/NFkB and SMAD pathways to promote osteoclast survival. Exp Cell Res 314(15):2725–2738

    Article  PubMed  CAS  Google Scholar 

  29. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev 8(12):958–969

    Article  CAS  Google Scholar 

  30. Armendariz-Borunda J, Katayama K, Seyer JM (1992) Transcriptional mechanisms of type I collagen gene expression are differentially regulated by interleukin-1 beta, tumor necrosis factor alpha, and transforming growth factor beta in Ito cells. J Biol Chem 267(20):14316–14321

    PubMed  CAS  Google Scholar 

  31. Regan MC, Kirk SJ, Hurson M, Sodeyama M, Wasserkrug HL, Barbul A (1993) Tumor necrosis factor-alpha inhibits in vivo collagen synthesis. Surgery 113(2):173–177

    PubMed  CAS  Google Scholar 

  32. Solis-Herruzo JA, Brenner DA, Chojkier M (1988) Tumor necrosis factor alpha inhibits collagen gene transcription and collagen synthesis in cultured human fibroblasts. J Biol Chem 263(12):5841–5845

    PubMed  CAS  Google Scholar 

  33. Tsujiuchi T, Sasaki Y, Murata N, Tsutsumi M, Nakae D, Konishi Y (2001) Elevated expression of transforming growth factor betas and the tumor necrosis factor family in lung adenocarcinomas induced by N-nitrosobis(2-hydroxypropyl)amine in rats. Exp Toxicol Pathol 53(4):291–295

    Article  PubMed  CAS  Google Scholar 

  34. Li R, Ruttinger D, Li R, Si LS, Wang YL (2003) Analysis of the immunological microenvironment at the tumor site in patients with non-small cell lung cancer. Langenbeck’s archives of surgery / Deutsche Gesellschaft fur Chirurgie 388(6):406–412

    Article  PubMed  Google Scholar 

  35. Saji H, Nakamura H, Awut I, Kawasaki N, Hagiwara M, Ogata A, Hosaka M, Saijo T, Kato Y, Kato H (2003) Significance of expression of TGF-beta in pulmonary metastasis in non-small cell lung cancer tissues. Ann Thorac Cardiovasc Surg 9(5):295–300

    PubMed  Google Scholar 

  36. El-Gamel A, Sim E, Hasleton P, Hutchinson J, Yonan N, Egan J, Campbell C, Rahman A, Sheldon S, Deiraniya A, Hutchinson IV (1999) Transforming growth factor beta (TGF-beta) and obliterative bronchiolitis following pulmonary transplantation. J Heart Lung Transplant 18(9):828–837

    Article  PubMed  CAS  Google Scholar 

  37. Elssner A, Jaumann F, Dobmann S, Behr J, Schwaiblmair M, Reichenspurner H, Furst H, Briegel J, Vogelmeier C (2000) Elevated levels of interleukin-8 and transforming growth factor-beta in bronchoalveolar lavage fluid from patients with bronchiolitis obliterans syndrome: proinflammatory role of bronchial epithelial cells. Munich Lung Transplant Group. Transplantation 70(2):362–367

    Article  PubMed  CAS  Google Scholar 

  38. Takizawa H, Tanaka M, Takami K, Ohtoshi T, Ito K, Satoh M, Okada Y, Yamasawa F, Nakahara K, Umeda A (2001) Increased expression of transforming growth factor-beta1 in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD). Am J Respir Crit Care Med 163(6):1476–1483

    PubMed  CAS  Google Scholar 

  39. Soler N, Ewig S, Torres A, Filella X, Gonzalez J, Zaubet A (1999) Airway inflammation and bronchial microbial patterns in patients with stable chronic obstructive pulmonary disease. Eur Respir J 14(5):1015–1022

    Article  PubMed  CAS  Google Scholar 

  40. Ziegenhagen MW, Schrum S, Zissel G, Zipfel PF, Schlaak M, Muller-Quernheim J (1998) Increased expression of proinflammatory chemokines in bronchoalveolar lavage cells of patients with progressing idiopathic pulmonary fibrosis and sarcoidosis. J Investig Med 46(5):223–231

    PubMed  CAS  Google Scholar 

  41. Bhowmik A, Seemungal TA, Sapsford RJ, Wedzicha JA (2000) Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations. Thorax 55(2):114–120

    Article  PubMed  CAS  Google Scholar 

  42. Ear T, Fortin CF, Simard FA, McDonald PP. Constitutive association of TGF-beta-activated kinase 1 with the IkappaB kinase complex in the nucleus and cytoplasm of human neutrophils and its impact on downstream processes. J Immunol 184(7):3897–3906

  43. Brandl M, Seidler B, Haller F, Adamski J, Schmid RM, Saur D, Schneider G. IKK(alpha) controls canonical TGF(ss)-SMAD signaling to regulate genes expressing SNAIL and SLUG during EMT in panc1 cells. J Cell Sci 123(Pt 24):4231–4239

  44. Wajant H, Scheurich P. TNFR1-induced activation of the classical NF-kappaB pathway. FEBS J 278(6):862–876

  45. Kuno K, Sukegawa K, Ishikawa Y, Orii T, Matsushima K (1994) Acid sphingomyelinase is not essential for the IL-1 and tumor necrosis factor receptor signaling pathway leading to NFkB activation. Int Immunol 6(8):1269–1272

    Article  PubMed  CAS  Google Scholar 

  46. Neil JR, Schiemann WP (2008) Altered TAB1:I kappaB kinase interaction promotes transforming growth factor beta-mediated nuclear factor-kappaB activation during breast cancer progression. Cancer Res 68(5):1462–1470

    Article  PubMed  CAS  Google Scholar 

  47. Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T (2004) NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114(4):569–581

    PubMed  CAS  Google Scholar 

  48. Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H (2007) NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26(5):711–724

    Article  PubMed  CAS  Google Scholar 

  49. Lin CY, Lin CJ, Chen KH, Wu JC, Huang SH, Wang SM (2006) Macrophage activation increases the invasive properties of hepatoma cells by destabilization of the adherens junction. FEBS Lett 580(13):3042–3050

    Article  PubMed  CAS  Google Scholar 

  50. Luo Y, Zhou H, Krueger J, Kaplan C, Lee SH, Dolman C, Markowitz D, Wu W, Liu C, Reisfeld RA, Xiang R (2006) Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 116(8):2132–2141

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from the Medical Research Council UK (G0700861). LAB is supported by a Marie Curie fellowship award. AJF is supported by a GlaxoSmithKline clinical fellowship award. ADS is supported by a HEFCE Senior Lectureship. DAM is supported by the Wellcome Trust (WT086755MA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Fisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borthwick, L.A., Gardner, A., De Soyza, A. et al. Transforming Growth Factor-β1 (TGF-β1) Driven Epithelial to Mesenchymal Transition (EMT) is Accentuated by Tumour Necrosis Factor α (TNFα) via Crosstalk Between the SMAD and NF-κB Pathways. Cancer Microenvironment 5, 45–57 (2012). https://doi.org/10.1007/s12307-011-0080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-011-0080-9

Keywords

Navigation