Skip to main content

Advertisement

Log in

Expression of Human MDGA1 Increases Cell Motility and Cell-Cell Adhesion and Reduces Adhesion to Extracellular Matrix Proteins in MDCK Cells

  • Original Paper
  • Published:
Cancer Microenvironment

Abstract

Characterization of the novel human protein MDGA1 (MAM Domain containing Glycosylphosphatidylinositol Anchor-1) has been reported in our laboratory in the past few years. hMDGA1 is a glycoprotein containing 955 aminoacids (137 kDa) attached to the eukaryotic cell membrane by a GPI (Glycosylphosphatidylinositol) anchor and localized specifically into membrane microdomains known as lipid rafts. Moreover, MDGA1 protein contains structural features found in different types of cell adhesion molecules (CAMs) such as the presence of immunoglobulin domains and a MAM domain (Meprin, A5 protein, receptor protein-tyrosine phosphatase μ), suggesting a role of MDGA1 in cell migration and/or adhesion. In order to investigate this aim, stable MDCK cell lines expressing MDGA1 or the truncated proteins IgGPI (lacking the MAM domain) and MAMGPI (lacking Ig domains) were generated. Our results reveal that MDGA1 increases the ability of MDCK cells to migrate, as it contains both Ig and MAM domains which have been implicated in cell motility. In addition, cell adhesion to extracellular matrix proteins, mainly to collagen IV, is reduced by MDGA1 and the IgGPI and MAMGPI truncated proteins. Accordingly, silencing MDGA1 by siRNA revealed a significant increase in adhesion to collagen IV. Furthermore, MDGA1 expression, through the intrinsic properties of the MAM domain, increases cell-cell adhesion independently of the cell monolayer used, suggesting that MDGA1 mediates cell-cell adhesiveness in a heterophilic manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Díaz-López A, Rivas C, Iniesta P et al (2005) Characterization of MDGA1, a novel human glycosylphosphatidylinositol-anchored protein localized in lipid rafts. Exp Cell Res 307:91–99

    Article  PubMed  Google Scholar 

  2. Litwack ED, Babey R, Buser R et al (2004) Identification and characterization of two novel brain-derived immunoglobulin superfamily members with a unique structural organization. Mol Cell Neurosci 25:263–274

    Article  PubMed  CAS  Google Scholar 

  3. De Juan C, Iniesta P, Gonzalez-Quevedo R et al (2002) Genomic organization of a novel glycosylphosphatidylinositol MAM gene expressed in human tissues and tumors. Oncogene 21:3089–3094

    Article  PubMed  Google Scholar 

  4. Fujimura Y, Iwashita M, Matsuzaki F, Yamamoto T (2006) MDGA1, an IgSF molecule containing a MAM domain, heterophilically associates with axon- and muscle-associated binding partners through distinct structural domains. Brain Res 1101:12–19

    Article  PubMed  CAS  Google Scholar 

  5. Takeuchi A, O’Leary DD (2006) Radial migration of superficial layer cortical neurons controlled by novel Ig cell adhesion molecule MDGA1. J Neurosci 26:4460–4464

    Article  PubMed  CAS  Google Scholar 

  6. Takeuchi A, Hamasaki T, Litwack ED, O’Leary DD (2007) Novel IgCAM, MDGA1, expressed in unique cortical area- and layer-specific patterns and transiently by distinct forebrain populations of cajal-retzius neurons. Cereb Cortex 17:1531–1541

    Article  PubMed  Google Scholar 

  7. Pimenta AF, Fischer I, Levitt P (1996) cDNA cloning and structural analysis of the human limbic-system-associated membrane protein (LAMP). Gene 170:189–195

    Article  PubMed  CAS  Google Scholar 

  8. Yoshihara Y, Kawasaki M, Tani A et al (1994) BIG-1: a new TAG-1/F3-related member of the immunoglobulin superfamily with neurite outgrowth-promoting activity. Neuron 13:415–426

    Article  PubMed  CAS  Google Scholar 

  9. Wilson DJ, Kim DS, Clarke GA et al (1996) A family of glycoproteins (GP55), which inhibit neurite outgrowth, are members of the Ig superfamily and are related to OBCAM, neurotrimin, LAMP and CEPU-1. J Cell Sci 109:3129–3138

    PubMed  CAS  Google Scholar 

  10. Kim J, Kaye FJ, Henslee JG et al (1992) Expression of carcinoembryonic antigen and related genes in lung and gastrointestinal cancers. Int J Cancer 52:718–725

    Article  PubMed  CAS  Google Scholar 

  11. Ilantzis C, Jothy S, Alpert LC et al (1997) Cell-surface levels of human carcinoembryonic antigen are inversely correlated with colonocyte differentiation in colon carcinogenesis. Lab Investig 76:703–716

    PubMed  CAS  Google Scholar 

  12. Peck D, Walsh FS (1993) Differential effects of over-expressed neural cell adhesion molecule isoforms on myoblast fusion. J Cell Biol 123:1587–1595

    Article  PubMed  CAS  Google Scholar 

  13. Haenisch C, Diekmann H, Klinger M et al (2005) The neuronal growth and regeneration associated Cntn1 (F3/F11/Contactin) gene is duplicated in fish: expression during development and retinal axon regeneration. Mol Cell Neurosci 28:361–374

    Article  PubMed  CAS  Google Scholar 

  14. Zuellig RA, Rader C, Schroeder A et al (1992) The axonally secreted cell adhesion molecule, axonin-1. Primary structure, immunoglobulin-like and fibronectin-type-III-like domains and glycosyl-phosphatidylinositol anchorage. Eur J Biochem 204:453–463

    Article  PubMed  CAS  Google Scholar 

  15. Cismasiu VB, Denes SA, Reilander H et al (2004) The MAM (meprin/A5-protein/PTPmu) domain is a homophilic binding site promoting the lateral dimerization of receptor-like protein-tyrosine phosphatase mu. J Biol Chem 279:26922–26931

    Article  PubMed  CAS  Google Scholar 

  16. Beckmann G, Bork P (1993) An adhesive domain detected in functionally diverse receptors. Trends Biochem Sci 18:40–41

    Article  PubMed  CAS  Google Scholar 

  17. Jiang W, Gorbea CM, Flannery AV et al (1992) The alpha subunit of meprin A. Molecular cloning and sequencing, differential expression in inbred mouse strains, and evidence for divergent evolution of the alpha and beta subunits. J Biol Chem 267:9185–9193

    PubMed  CAS  Google Scholar 

  18. Takagi S, Hirata T, Agata K (1991) The A5 antigen, a candidate for the neuronal recognition molecule, has homologies to complement components and coagulation factors. Neuron 7:295–307

    Article  PubMed  CAS  Google Scholar 

  19. Gao Z, Garbers DL (1998) Species diversity in the structure of zonadhesin, a sperm-specific membrane protein containing multiple cell adhesion molecule-like domains. J Biol Chem 273:3415–3421

    Article  PubMed  CAS  Google Scholar 

  20. Brandenberger R, Schmidt A, Linton J et al (2001) Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin alpha8beta1 in the embryonic kidney. J Cell Biol 154:447–458

    Article  PubMed  CAS  Google Scholar 

  21. Morimura N, Tezuka Y, Watanabe N et al (2001) Molecular cloning of POEM: a novel adhesion molecule that interacts with alpha8beta1 integrin. J Biol Chem 276:42172–42181

    Article  PubMed  CAS  Google Scholar 

  22. Fujisawa H (2002) From the discovery of neuropilin to the determination of its adhesion sites. Adv Exp Med Biol 515:1–12

    PubMed  CAS  Google Scholar 

  23. Zondag GC, Koningstein GM, Jiang YP et al (1995) Homophilic interactions mediated by receptor tyrosine phosphatases mu and kappa. A critical role for the novel extracellular MAM domain. J Biol Chem 270:14247–14250

    Article  PubMed  CAS  Google Scholar 

  24. Chen H, He Z, Bagri A, Tessier-Lavigne M (1998) Semaphorin-neuropilin interactions underlying sympathetic axon responses to class III semaphorins. Neuron 21:1283–1290

    Article  PubMed  CAS  Google Scholar 

  25. Nakamura F, Tanaka M, Takahashi T et al (1998) Neuropilin-1 extracellular domains mediate semaphorin D/III-induced growth cone collapse. Neuron 21:1093–1100

    Article  PubMed  CAS  Google Scholar 

  26. Sano S, Takashima S, Niwa H et al (2009) Characterization of teleost Mdga1 using a gene-trap approach in medaka (Oryzias latipes). Genesis 0:1–9

    Google Scholar 

  27. Peinado H, Quintanilla M, Cano A (2003) Transforming growth factor β-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 278:21113–21123

    Article  PubMed  CAS  Google Scholar 

  28. Moreno-Bueno G, Peinado H, Molina P et al (2009) The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat Protoc 4:1591–1613

    Article  PubMed  CAS  Google Scholar 

  29. Davis S, Aldrich TH, Valenzuela DM et al (1991) The receptor for ciliary neurotrophic factor. Science 253:59–63

    Article  PubMed  CAS  Google Scholar 

  30. Sendtner M, Carroll P, Holtmann B et al (1994) Ciliary neurotrophic factor. J Neurobiol 25:1436–1453

    Article  PubMed  CAS  Google Scholar 

  31. Stahl N, Yancopoulos GD (1994) The tripartite CNTF receptor complex: activation and signaling involves components shared with other cytokines. J Neurobiol 25:1454–1466

    Article  PubMed  CAS  Google Scholar 

  32. Heinrich PC, Behrmann I, Muller-Newen G et al (1998) L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334:297–314

    PubMed  CAS  Google Scholar 

  33. Wetzel A, Chavakis T, Preissner KT et al (2004) Human Thy-1 (CD90) on activated endothelial cells is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Immunol 172:3850–3859

    PubMed  CAS  Google Scholar 

  34. Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118–132

    Article  PubMed  CAS  Google Scholar 

  35. Kähler AK, Djurovic S, Kulle B et al (2008) Association analysis of schizophrenia on 18 genes involved in neuronal migration: MDGA1 as a new susceptibility gene. Am J Med Genet B Neuropsychiatr Genet 147B:1089–1100

    Article  PubMed  Google Scholar 

  36. Bucan M, Abrahams BS, Wang K et al (2009) Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PLoS Genet 5:e1000536

    Article  PubMed  Google Scholar 

  37. Lu XY, Lu Y, Zhao YJ et al (2008) Cell cycle regulator gene CDC5L, a potential target for 6p12-p21 amplicon in osteosarcoma. Mol Cancer Res 6(6):937–946

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. Carmen Rivas (Departamento de Microbiologia. Facultad de Farmacia. UCM) for continuous scientific support and insightful discussions, to Dr. Jesús Cruces (Departamento de Bioquímica. Facultad de Medicina. UAM) for valuable comments and hepful discussions on MDGA1 and to Dr. Miguel Quintanilla (Instituto de Investigaciones Biomédicas. CSIC.) for kindly providing MDCK cells. We also thank Professor Ian Hart (Barts & The London School of Medicine & Dentistry, London, UK) for his hospitality and assistance in the migration assays. A. Diaz-Lopez was a fellowship of Ministerio de Educación y Ciencia of Spain. This work was supported by grants from Fundación Investigación Médica Mútua Madrileña (FMMA) (Spain); Ministerio de Sanidad y Consumo (FIS PI080033) and Red Temática de Investigación Cooperativa de Centros de Cáncer (RTICC) RD06/0020/0021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen De Juan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-López, A., Iniesta, P., Morán, A. et al. Expression of Human MDGA1 Increases Cell Motility and Cell-Cell Adhesion and Reduces Adhesion to Extracellular Matrix Proteins in MDCK Cells. Cancer Microenvironment 4, 23–32 (2011). https://doi.org/10.1007/s12307-010-0055-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-010-0055-2

Keywords

Navigation