Skip to main content

Assessment of chondrogenic differentiation potential of autologous activated peripheral blood stem cells on human early osteoarthritic cancellous tibial bone scaffold



Current therapeutic regimens in osteoarthritis (OA) address mainly pain but not the slow progressive degradation of the extracellular matrix (ECM) and the loss of a chondrogenic phenotype in articular cartilage. In the present study, using an early OA cancellous bone scaffold, we aimed to uncover evidence of the successful hyaline cartilage regenerative capacity of autologous human granulocyte colony-stimulating factor (hG-CSF)-activated peripheral blood stem cells (AAPBSC) with growth factor addition.

Materials and Methods

AAPBSC were harvested in ten patients (median age 58 years, 8 females), and flow cytometry was performed for cell surface markers. Arthroscopically obtained cancellous bone scaffold specimens were seeded with AAPBSC. In Group 1, the scaffold was seeded with AAPBSC only, in Group 2, AAPBSC plus hyaluronic acid (HA), and in Group 3, AAPBSC plus HA, hG-CSF, and double-centrifuged platelet-rich plasma (PRP). The specimens were analyzed for cell attachment and proliferation by the fluorometric quantification of cellular DNA assay and scanning electron microscopy. Chondrogenic gene expression was determined by reverse transcriptase-polymerase chain reaction (RT-PCR) of Sox9, collagen type II (COL-2), and aggrecan. Histological sections of scaffold constructs for cartilaginous matrix formation were stained with toluidine blue (proteoglycan) and safranin O (sGAG) after 3 weeks.


AAPBSC displayed especially high levels of CD29 and CD44 surface markers, as well as CD90, and CD105, while only a small proportion expressed CD34. Almost half of the seeded cells attached on the bone scaffolds in all three groups (not statistically significant), whereas the means of cell proliferation on day 7 compared to day 1 were statistically significant difference with the order of increase as group 3 > group 2 > group 1. RT-PCR showed statistically significant sequential increases in Sox9, COL-2, and Aggrecan all being highest in group 3. Histological analysis demonstrated cells in the cancellous bone scaffold with a round morphology, and ECM was positively stained by toluidine blue and safranin O indicating increased proteoglycan and glycosaminoglycan content, respectively, in the newly formed cartilage matrix.


AAPBSC initiated chondrocyte differentiation on an autologous cancellous bone scaffold, and the addition of PRP and hG-CSF further stimulated cell proliferation toward a chondrocyte phenotype with potentiated Sox9 transcription resulting in sequential COL-2 and aggrecan mRNA increases that ultimately resulted in histologically confirmed increased proteoglycan and glucosaminoglycan content in newly formed hyaline cartilage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Akiyama H, Lefebvre V (2011) Unraveling the transcriptional regulatory machinery in chondrogenesis. J Bone Miner Metab 29:390–395. doi:10.1007/s00774-011-0273-9

    PubMed Central  PubMed  Article  Google Scholar 

  2. Al Faqeh H, Nor Hamdan BM, Chen HC, Aminuddin BS, Ruszymah BH (2012) The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model. Exp Gerontol 47:458–464. doi:10.1016/j.exger.2012.03.018

    PubMed  Article  Google Scholar 

  3. Buda R, Vannini F, Cavallo M, Baldassarri M, Luciani D, Mazzotti A, Pungetti C, Olivieri A, Giannini S (2013) One-step arthroscopic technique for the treatment of osteochondral lesions of the knee with bone-marrow-derived cells: three years results. Musculoskelet Surg 97:145–151. doi:10.1007/s12306-013-0242-7

    PubMed  Article  Google Scholar 

  4. Chiba Y, Kuroda S, Osanai T, Shichinohe H, Houkin K, Iwasaki Y (2012) Impact of ageing on biological features of bone marrow stromal cells (BMSC) in cell transplantation therapy for CNS disorders: functional enhancement by granulocyte-colony stimulating factor (G-CSF). Neuropathology 32:139–148. doi:10.1111/j.1440-1789.2011.01255.x

    PubMed  Article  Google Scholar 

  5. Duff SE, Li C, Garland JM, Kumar S (2003) CD105 is important for angiogenesis: evidence and potential applications. FASEB J 17:984–992. doi:10.1096/fj.02-0634rev

    CAS  PubMed  Article  Google Scholar 

  6. Emadedin M, Aghdami N, Taghiyar L, Fazeli R, Moghadasali R, Jahangir S, Farjad R et al (2012) Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med 15:422–428. doi:

    PubMed  Google Scholar 

  7. Furumatsu T, Asahara H (2010) Histone acetylation influences the activity of Sox9-related transcriptional complex. Acta Med Okayama 64: 351–357.

    Google Scholar 

  8. Grimsholm O, Guo Y, Ny T, Forsgren S (2008) Expression patterns of neurotrophins and neurotrophin receptors in articular chondrocytes and inflammatory infiltrates in knee joint arthritis. Cells Tissues Organs 188:299–309. doi:10.1159/000121432

    CAS  PubMed  Article  Google Scholar 

  9. Huang CY, Reuben PM, D’Ippolito G, Schiller PC, Cheung HS (2004) Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture. Anat Rec A Discov Mol Cell Evol Biol 278:428–436. doi:10.1002/ar.a.20010

    PubMed  Article  Google Scholar 

  10. Kiani C, Chen L, Wu YJ, Yee AJ, Yang BB (2002) Structure and function of aggrecan. Cell Res 12:19–32. doi:10.1038/

    PubMed  Article  Google Scholar 

  11. Li N, Yuan R, Chen T, Chen L, Jin X (2009) Effect of platelet-rich plasma and latissimus dorsi muscle flap on osteogenesis and vascularization of tissue-engineered bone in dog. J Oral Maxillofac Surg 67:1850–1858. doi:10.1016/j.joms.2009.04.029

    PubMed  Article  Google Scholar 

  12. Maes C, Araldi E, Haigh K, Khatri R, Van Looveren R, Giaccia AJ, Haigh JJ, Carmeliet G, Schipani E (2012) VEGF-independent cell-autonomous functions of HIF-1α regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival. J Bone Miner Res 27:596–609. doi:10.1002/jbmr.1487

    CAS  PubMed  Article  Google Scholar 

  13. Mishra A, Tummala P, King A, Lee B, Kraus M, Tse V, Jacobs CR (2009) Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Eng Part C Methods 15:431–435. doi:10.1089/ten.tec2008.0534

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  14. Ogawa M, LaRue AC, Mehrotra M (2013) Hematopoietic stem cells are pluripotent and not just “hematopoietic”. Blood Cells Mol Dis 51:3–8. doi:10.1016/j.bcmd.2013.01.008

    PubMed Central  PubMed  Article  Google Scholar 

  15. Parsons P, Hesselden K, Butcher A, Maughan J, Milner R, Horner A (2009) The biological effect of platelet rich-plasma on the fracture healing process. J Bone Joint Surg Br 91B (Suppl 2): 293-c. doi:10.1097/BOT.0b013e318188dbb7

  16. Quintero M, Riera H, Colantuoni G, Khatib AM, Attalah H, Moldovan F, Mitrovic DR, Lomri A (2008) Granulocyte-macrophage colony stimulating factor is anabolic and interleukin-1beta is catabolic for rat articular chondrocytes. Cytokine 44:366–372. doi:10.1016/j.cyto.2008.10.003

    CAS  PubMed  Article  Google Scholar 

  17. Sasaki K, Kuroda R, Ishida K, Kubo S, Matsumoto T, Mifune Y, Kinoshita K, Tei K, Akisue T, Tabata Y, Kurosaka M (2008) Enhancement of tendon-bone osteointegration of anterior cruciate ligament graft using granulocyte colony-stimulating factor. Am J Sports Med 36:1519–1527. doi:10.1177/0363546508316282

    PubMed  Article  Google Scholar 

  18. Saw KY, Anz A, Merican S, Tay YG, Ragavanaidu K, Jee CS, McGuire DA (2011) Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: a report of 5 cases with histology. Arthroscopy 27:493–506. doi:10.1016/j.arthro.2010.11.054

    PubMed  Article  Google Scholar 

  19. Saw KY, Anz A, Siew-Yoke Jee C, Merican S, Ching-Soong Ng R, Roohi SA, Ragavanaidu K (2013) Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy 29:684–694. doi:10.1016/j.arthro.2012.12.008

    PubMed  Article  Google Scholar 

  20. Saw KY, Hussin P, Loke SC, Azam M, Chen HC, Tay YG, Low S, Wallin KL, Ragavanaidu K (2009) Articular cartilage regeneration with autologous marrow aspirate and hyaluronic Acid: an experimental study in a goat model. Arthroscopy 25:1391–1400. doi:10.1016/j.arthro.2009.07.011

    PubMed  Article  Google Scholar 

  21. Scott RD (2006) Three decades of experience with unicompartmental knee arthroplasty: mistakes made and lessons learned. Orthopedics 29:829–831.

    Google Scholar 

  22. Singh JA (2012) Stem cells and other innovative intra-articular therapies for osteoarthritis: what does the future hold? BMC Med 10:44. doi:10.1186/1741-7015-10-44

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. Takahashi Y, Yamamoto M, Tabata Y (2005) Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and β-tricalcium phosphate. Biomaterials 26: 3587–3596. doi:10.1016/j.biomaterials.2004.09.046

    Google Scholar 

  24. Turajane T, Chaveewanakorn U, Larbpiboonpong V, Aojanepong J, Thitiset T, Honsawek S, Fongsarun J, Papadopoulos KI (2013) Combination of intraarticular autologous activated peripheral blood stem cells with growth factor addition/preservation and hyaluronic acid in conjunction with arthroscopic microdrilling mesenchymal cell stimulation improves quality of life and regenerates articular cartilage in early osteoarthritic knee disease. J Med Assoc Thai 96:580–588

    PubMed  Google Scholar 

  25. Wan R, Hu J, Zhou Q, Wang J, Liu P, Wei Y (2012) Application of co-expressed genes to articular cartilage: new hope for the treatment of osteoarthritis (Review). Mol Med Report 6:16–18. doi:10.3892/mmr.2012.859

    CAS  Google Scholar 

  26. Wang S, Qu X, Zhao RC (2012) Clinical applications of mesenchymal stem cells. J Hematol Oncol 5:19. doi:10.1186/1756-8722-5-19

    Article  Google Scholar 

  27. Wu W, Chen F, Liu Y, Ma Q, Mao T (2007) Autologous injectable tissue-engineered cartilage by using platelet-rich plasma: experimental study in a rabbit model. J Oral Maxillofac Surg 65:1951–1957. doi:10.1016/j.joms.2006.11.044

    PubMed  Article  Google Scholar 

Download references


The authors would like to thank the Research Core Facility of the Department of Biochemistry and Chulalongkorn Medical Research Center (ChulaMRC) for kindly providing facilities; Dusit Vejchakan Foundation, Surgeon in Chief Foundation, Police General Hospital, TRB Chermidica Co., Ltd.; Dr. Juthatip Fongsarun for performing the leukaphereses and all patients and their families for participating in the study.

Conflict of interest

THAI StemLife Co., Ltd. has financially supported the autologous leukaphereses in the 10 samples tested. KP holds shares in THAI StemLife’s founding company and is an executive board member of THAI StemLife. The remaining authors have no competing financial or non-financial interests.

Author information

Authors and Affiliations


Corresponding author

Correspondence to K. I. Papadopoulos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Turajane, T., Thitiset, T., Honsawek, S. et al. Assessment of chondrogenic differentiation potential of autologous activated peripheral blood stem cells on human early osteoarthritic cancellous tibial bone scaffold. Musculoskelet Surg 98, 35–43 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Autologous
  • Peripheral blood
  • Stem cells
  • Osteoarthritis
  • Knee
  • Granulocyte colony-stimulating factor
  • hG-CSF
  • Chondrogenic differentiation
  • Platelet-rich plasma
  • Arthroscopy