A Multiscale Approach to Investigate the Biosemiotic Complexity of Two Acoustic Communities in Primary Forests with High Ecosystem Integrity Recorded with 3D Sound Technologies

Abstract

The biosemiotic complexity of acoustic communities in the primary forests of Ulu Temburong (Brunei, Borneo) and Yasunì (Ecuador, Amazon) was investigated with continuous 24-h recordings, using the acoustic signature and multiscale approach of ecoacoustic events and their emergent fractal dimensions. The 3D recordings used for the analysis were collected in undisturbed primary equatorial forests under the scope of the project, Fragments of Extinction, which produces 3D sound portraits with the highest definition possible using current technologies – a perfect dataset on which to perform a multiscale qualitative analysis. The ecoacoustic events (EEs) detected by a combination of the Acoustic Complexity Indices, ACIft, ACIft evenness, and ACItf evenness, and its fractal dimension were developed according to a biosemiotics approach in which the ecofield theory states that EE functions like a species-specific carrier of meaning. EEs, extracted according to 10 levels of temporal resolution, from 1 to 360 s, confirm the hypothesis that these acoustic communities have an internal complexity that responds to a fractal structure (fractal dimension D of Ulu Temburong D = 1.33 versus Yasunì D = 1.31). Yasunì was richer in EEs, with a higher coefficient of variation of hourly fractal dimension (Yasunì: D = 6.16 versus Ulu Temburong: D = 2.66). This methodology opens up promising new perspectives in the acoustic assessment of habitat quality and monitoring landscape modification. It also confirms the great potential of the biosemiotics approach in converting acoustic frequencies into ecoacoustic events through encoding procedures that mimic potential species-specific interpretations of the sonic environment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ashton, P. S. (2004). Dipterocarpaceae. In E. Soepadmo, L. G. Saw, & R. C. K. Chung (Eds.), Tree Flora of Sabah and Sarawak, volume (pp. 63–388). Kuala Lumpur, Malaysia: Government of Malaysia. ISBN 983-2181-59-3.

    Google Scholar 

  2. Bass M.S., Finer, M., Jenkins, C.N., Kreft, H., Cisneros-Heredia, D.F., McCracken, S.F., et al. (2010). Global Conservation Significance of Ecuador's Yasuní National Park. PlosOne. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008767

  3. Blumstein, D. T., Mennill, D. J., Clemins, P., Girod, L., Yao, K., Patricelli, G., & al, (2011). Acoustic monitoring in terrestrial environments using microphone arrays: Applications, technological considerations and prospectus. Journal of Applied Ecology, 48, 758–767.

  4. Burt, J. M., & Vehrencamp, S. L. (2005). Dawn chorus as an interactive communication network. In P. K. McGregor (Ed.), Animal communication networks (pp. 320–341). Cambridge: Cambridge University Press.

    Google Scholar 

  5. Celis-Murillo, A., Deppe, J. L., & Allen, M. F. (2009). Using soundscape recordings to estimate bird species abundance, richness, and composition. Journal of Field Ornithology, 80, 64–78.

    Article  Google Scholar 

  6. Delaval, M., Henry, M., & Charles-Dominique, P. (2005). Interspecific competition and niche partitioning: Example of a neotropical rainforest bat community. Revue d’ Ecologie. Terre et Vie, 6(2), 149–166.

    Google Scholar 

  7. Depraetere, M., Pavoine, S., Jiguet, F., Gasc, A., Duvail, S., & Sueur, J. (2012). Monitoring animal diversity using acoustic indices: Implementation in a temperate woodland. Ecological Indicators, 13, 46–54.

    Article  Google Scholar 

  8. Dominoni, D. M., Greif, S., Nemeth, E., & Brumm, H. (2016). Airport noise predicts song timing of European birds. Ecology and Evolution, 6(17), 6151–6159.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dorren, L., Berger, F., Imeson, A., Maier, B., & Rey, F. (2004). Integrity, stability and management of protection forests in the European Alps. Forest Ecology and Management, 195, 165–176. https://doi.org/10.1016/j.foreco.2004.02.057.

    Article  Google Scholar 

  10. Eyring, C. F. (1946). Jungle acoustics. The Journal of Acoustical Society of America, 18(2), 257–270.

    Article  Google Scholar 

  11. Farina, A. (2018). Ecoacoustic codes and ecological complexity. BioSystems, 164, 147–154.

    Article  PubMed  Google Scholar 

  12. Farina, A., & Belgrano, A. (2004). Eco-field: A new paradigm for landscape ecology. Ecological Research, 19, 107–110.

    Article  Google Scholar 

  13. Farina, A., & Belgrano, A. (2006). The eco-field hypothesis: Toward a cognitive landscape. Landscape Ecology, 21, 5–17.

    Article  Google Scholar 

  14. Farina, A., & James, P. (2016). The acoustic communities: Definition, description and ecological role. BioSystems, 147, 11–20.

    Article  PubMed  Google Scholar 

  15. Farina, A., & Salutari, P. (2016). Applying the ecoacoustic event detection and identification (EEDI) model to the analysis of acoustic complexity. Journal of Mediterranean Ecology, 14, 13–42.

    Google Scholar 

  16. Farina, A., Pieretti, N., Salutari, P., Tognari, E., & Lombardi, A. (2016). The application of the acoustic complexity indices (ACI) to ecoacoustic event detection and identification (EEDI) modeling. Biosemiotics, 9, 227–246.

    Article  Google Scholar 

  17. Farina, A., Gage, S. H., & Salutari, P. (2018). Testing the Ecoacoustics event detection and identification (EEDI) model on Mediterranean soundscapes. Ecological Indicators, 85, 698–715.

    Article  Google Scholar 

  18. Feder, J. (1988). Fractals. New York: Plenum Press.

    Google Scholar 

  19. Ferguson, D. E. (1971). The sensory basis of orientation in amphibians. Annals of New York Academy of Sciences, 188, 30–36. https://doi.org/10.1111/j.1749-6632.1971.tb13087.x.

    Article  CAS  Google Scholar 

  20. Frontier, S. (1987). Application of fractal theory to ecology. In S. Legendre & L. Legendre (Eds.), Developments in numerical ecology (pp. 335–378). Nato ASI series, vol. G14. Berlin: Springer-Verlag.

    Google Scholar 

  21. Fuller, R. A., Warren, P. H., & Gaston, K. J. (2007). Daytime noise predicts nocturnal singing in urban robins. Biology Letters, 3, 368–370.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gage, S. H., Napoletano, B. M., & Cooper, M. C. (2001). Assessment of ecosystem biodiversity by acoustic diversity indices. Journal of the Acoustical Society of America, 109, 2430. https://doi.org/10.1121/1.4744597.

  23. Gil, D., Honarmand, M., Pascual, J., Perez-Mena, E., & Macias Garcia, C. (2014). Birds living near airports advance their dawn chorus and reduce overlap with aircraft noise. Behavioral Ecology, 26, 435–443.

    Article  Google Scholar 

  24. Grafe, T. U., & Keller, A. (2009). A Bornean amphibian hotspot: The lowland mixed dipterocarp rainforest at Ulu Temburong National Park, Brunei Darussalam. Salamandra, 45, 25–38.

    Google Scholar 

  25. Grafe, U., Monacchi, D. (2014). Detailed Species Recognition of a Circadian Hi-definition Recording in a Primary Dipterocarp Forest. Unpublished study.

  26. Griffin, D. R., & Hopkins, C. D. (1974). Sound audible to migrating birds. Animal Behaviour, 22(3), 672–678.

    Article  Google Scholar 

  27. Halley, J. M., Hartley, S., Kallimanis, A. S., Kunin, W. E., Lennon, J. J., & Sgardelis, S. P. (2004). Uses and abuses of fractal methodology in ecology. Ecology Letters, 7, 254–271.

    Article  Google Scholar 

  28. Hastings, H. M., & Sugihara, G. (1993). Fractals. A user's guide for the natural sciences. Oxford: Oxford University Press.

    Google Scholar 

  29. Joo, W., Gage, S. H., & Kasten, E. P. (2011). Analysis and interpretation of variability in soundscapes along an urban-rural gradient. Landscape Urban Planning, 103, 259–276.

    Article  Google Scholar 

  30. Krause, B. L. (1993). The niche hypothesis. Soundscape Newsletter, 6, 6–10.

    Google Scholar 

  31. Krause, B. L. (2012). The great animal orchestra: Finding the origins of music in the world’s wild places. London: Profile Books Limited.

    Google Scholar 

  32. Krause, B., Gage, S. H., & Joo, W. (2011). Measuring and interpreting the temporal variability in the soundscape at four places in Sequoia National Park. Landscape Ecology, 26, 1247–1256.

    Article  Google Scholar 

  33. Lemon, R. E., Struger, J., Lechowicz, M. J., & Norman, R. F. (1981). Song features and singing heights of American warblers. Maximization or optimization of distance. Journal of the Acoustical Society of America, 69, 1169–1176.

    Article  Google Scholar 

  34. Li, J., Du, Q., & Sun, C. (2009). An improved box-counting method for image fractal dimension estimation. Pattern Recognition, 42(11), 2460–2469.

    Article  Google Scholar 

  35. Mandelbrot, B. B. (1983). The fractal geometry of nature. New York: Freeman.

  36. Mazaris, A. D., Kallimanis, A. S., Chatzigianidis, G., Papadimitriou, K., & Pantis, J. D. (2009). Spatiotemporal analysis of an acoustic environment: Interactions between landscape features and sounds. Landscape Ecology, 24, 817–831.

    Article  Google Scholar 

  37. Monacchi, D. (2007). Prima Amazonia - portraits of acoustic biodiversity, Glen Ellen: Wild sanctuary, WSI-056.

  38. Monacchi, D. (2008). Field recording in Dzanga-Sangha, Central African Republic and soundscape design for the film “Oka!” directed by Lavinia currier, Roland Films.

  39. Monacchi, D. (2011). Recording and representation in eco-acoustic composition. In: J. Rudi (Ed.), Soundscape in the Arts (pp. 227–250), OSLO: NOTAM.

  40. Monacchi, D. (2013). Fragments of extinction – An eco-acoustic music project on primary rainforest biodiversity. Leonardo Music Journal, 23(Sound Art)s), 23–25.

    Article  Google Scholar 

  41. Monacchi, D. (2016). A philosophy of eco-acoustics in the interdisciplinary project fragments of extinction. In F. Bianchi & V. J. Manzo (Eds.), Environmental sound artists (pp. 159–168). Oxford: Oxford University Press.

    Google Scholar 

  42. Monacchi, D. (2017). The Sonic Heritage of Ecosystems - Toward a formulation. Proceedings of the SOIMA International Conference Unlocking Sound and Image Heritage, Brussels: ICCROM. ISBN 978–92–9077-264. https://doi.org/10.18146/soima2015

  43. Morley, R. J. (2000). Origin and evolution of tropical rain forests. Chichester: John Wiley and Sons.

    Google Scholar 

  44. Morse, D. R., Lawton, J. H., Dodson, M. M., & Williamson, M. H. (1985). Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature, 314, 731–733.

    Article  Google Scholar 

  45. Morton, E.S. (1970). Ecological sources of selection on avian sounds. Ph.D. diss. Yale University.

  46. Morton, E. (1975). Ecological sources of selection on avian sounds. The American Naturalist, 109(965), 17–34.

    Article  Google Scholar 

  47. Mullet, T. C., Farina, A., & Gage, S. H. (2017). The acoustic habitat hypothesis: An ecoacoustics perspective on species habitat selection. Biosemiotics, 10, 319–336.

    Article  Google Scholar 

  48. Pieretti, N., Farina, A., & Morri, D. (2011). A new methodology to infer the singing activity of an avian community: The acoustic complexity index (ACI). Ecological Indicators, 11, 868–873.

    Article  Google Scholar 

  49. Pieretti, N., Duarte, M.H.L., Sousa-Lima,R.S., Rodrigues, M., Young, R.J., Farina, A. (2015). Determining sampling schemes for passive acoustic studies in different tropical ecosystems. Tropical Conservation Science, 8(1), 215–234.

  50. Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L., Napoletano, B. M., Gage, S. H., & Pieretti, N. (2011). Soundscape ecology: The science of sound in the landscape. BioScience, 61, 203–216.

    Article  Google Scholar 

  51. Qi, J., Gage, S. H., Joo, W., Napoletano, B. N., & Biswas, S. (2008). In W. Ji (Ed.), Wetland and water resource modeling and assessment Soundscape characteristics of an environment: A new ecological indicator of ecosystem health (pp. 201–211). New York: CRC Press.

    Google Scholar 

  52. Sinsch, U., Lümkemann, K., Rosar, K., Schwarz, C., & Dehling, M. (2012). Acoustic niche partitioning in an anuran community inhabiting an Afromontane wetland (Butare, Rwanda). African Zoology, 47(1), 60–73. https://doi.org/10.1080/15627020.2012.11407524.

    Article  Google Scholar 

  53. Sugihara, G., & May, R. M. (1990). Applications of fractals in ecology. TREE, 5, 79–86.

    CAS  PubMed  Google Scholar 

  54. Tolimieri, N., Jeffs, A., & Montgomery, J. C. (2000). Ambient sound as a cue for navigation by the pelagic larvae of reef fishes. Marine Ecology Progress Series, 207, 219–224.

    Article  Google Scholar 

  55. Tucker, D., Gage, S. H., Williamson, I., & Fuller, S. (2014). Linking ecological condition and the soundscape in fragmented Australian forests. Landscape Ecology, 29(4), 745–758.

    Article  Google Scholar 

  56. Ward, P., & Zahavi, A. (1972). The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis, 115, 517–534.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Almo Farina.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. 1
figure5

Acoustic signature (ACItf) from Ulu Temburong (A) and Yasunì (B) along daily hours (in x axis the frequency bins are indicated). The absolute value of ACItf is reported in the y axis. (PNG 27102 kb)

figure6

(PNG 7250 kb)

Fig. 2
figure7

EE similarity of each daily hour according to ten levels of temporal resolution (from 1 to 360 s) in Ulu Temburong (A) and Yasunì (B) study sites (Ward’s method and Euclidean distance). (PNG 1928 kb)

figure8

(PNG 1958 kb)

High Resolution (EPS 13713 kb)

High Resolution (EPS 13211 kb)

High Resolution (EPS 8692 kb)

High Resolution (EPS 9127 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Monacchi, D., Farina, A. A Multiscale Approach to Investigate the Biosemiotic Complexity of Two Acoustic Communities in Primary Forests with High Ecosystem Integrity Recorded with 3D Sound Technologies. Biosemiotics 12, 329–347 (2019). https://doi.org/10.1007/s12304-019-09361-z

Download citation

Keywords

  • Primary forests
  • Tropical acoustic communities
  • 3D sound recording
  • Ambisonics
  • Ecoacoustic events
  • Fractal analysis
  • Soundscape