Advertisement

Biosemiotics

, Volume 12, Issue 2, pp 329–347 | Cite as

A Multiscale Approach to Investigate the Biosemiotic Complexity of Two Acoustic Communities in Primary Forests with High Ecosystem Integrity Recorded with 3D Sound Technologies

  • David Monacchi
  • Almo FarinaEmail author
Article

Abstract

The biosemiotic complexity of acoustic communities in the primary forests of Ulu Temburong (Brunei, Borneo) and Yasunì (Ecuador, Amazon) was investigated with continuous 24-h recordings, using the acoustic signature and multiscale approach of ecoacoustic events and their emergent fractal dimensions. The 3D recordings used for the analysis were collected in undisturbed primary equatorial forests under the scope of the project, Fragments of Extinction, which produces 3D sound portraits with the highest definition possible using current technologies – a perfect dataset on which to perform a multiscale qualitative analysis. The ecoacoustic events (EEs) detected by a combination of the Acoustic Complexity Indices, ACIft, ACIft evenness, and ACItf evenness, and its fractal dimension were developed according to a biosemiotics approach in which the ecofield theory states that EE functions like a species-specific carrier of meaning. EEs, extracted according to 10 levels of temporal resolution, from 1 to 360 s, confirm the hypothesis that these acoustic communities have an internal complexity that responds to a fractal structure (fractal dimension D of Ulu Temburong D = 1.33 versus Yasunì D = 1.31). Yasunì was richer in EEs, with a higher coefficient of variation of hourly fractal dimension (Yasunì: D = 6.16 versus Ulu Temburong: D = 2.66). This methodology opens up promising new perspectives in the acoustic assessment of habitat quality and monitoring landscape modification. It also confirms the great potential of the biosemiotics approach in converting acoustic frequencies into ecoacoustic events through encoding procedures that mimic potential species-specific interpretations of the sonic environment.

Keywords

Primary forests Tropical acoustic communities 3D sound recording Ambisonics Ecoacoustic events Fractal analysis Soundscape 

Notes

Supplementary material

12304_2019_9361_Fig5_ESM.png (26.5 mb)
Fig. 1

Acoustic signature (ACItf) from Ulu Temburong (A) and Yasunì (B) along daily hours (in x axis the frequency bins are indicated). The absolute value of ACItf is reported in the y axis. (PNG 27102 kb)

12304_2019_9361_MOESM1_ESM.eps (13.4 mb)
High Resolution (EPS 13713 kb)
12304_2019_9361_Fig6_ESM.png (7.1 mb)

(PNG 7250 kb)

12304_2019_9361_MOESM2_ESM.eps (12.9 mb)
High Resolution (EPS 13211 kb)
12304_2019_9361_Fig7_ESM.png (1.9 mb)
Fig. 2

EE similarity of each daily hour according to ten levels of temporal resolution (from 1 to 360 s) in Ulu Temburong (A) and Yasunì (B) study sites (Ward’s method and Euclidean distance). (PNG 1928 kb)

12304_2019_9361_MOESM3_ESM.eps (8.5 mb)
High Resolution (EPS 8692 kb)
12304_2019_9361_Fig8_ESM.png (1.9 mb)

(PNG 1958 kb)

12304_2019_9361_MOESM4_ESM.eps (8.9 mb)
High Resolution (EPS 9127 kb)

References

  1. Ashton, P. S. (2004). Dipterocarpaceae. In E. Soepadmo, L. G. Saw, & R. C. K. Chung (Eds.), Tree Flora of Sabah and Sarawak, volume (pp. 63–388). Kuala Lumpur, Malaysia: Government of Malaysia. ISBN 983-2181-59-3.Google Scholar
  2. Bass M.S., Finer, M., Jenkins, C.N., Kreft, H., Cisneros-Heredia, D.F., McCracken, S.F., et al. (2010). Global Conservation Significance of Ecuador's Yasuní National Park. PlosOne. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008767
  3. Blumstein, D. T., Mennill, D. J., Clemins, P., Girod, L., Yao, K., Patricelli, G., & al, (2011). Acoustic monitoring in terrestrial environments using microphone arrays: Applications, technological considerations and prospectus. Journal of Applied Ecology, 48, 758–767.Google Scholar
  4. Burt, J. M., & Vehrencamp, S. L. (2005). Dawn chorus as an interactive communication network. In P. K. McGregor (Ed.), Animal communication networks (pp. 320–341). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  5. Celis-Murillo, A., Deppe, J. L., & Allen, M. F. (2009). Using soundscape recordings to estimate bird species abundance, richness, and composition. Journal of Field Ornithology, 80, 64–78.CrossRefGoogle Scholar
  6. Delaval, M., Henry, M., & Charles-Dominique, P. (2005). Interspecific competition and niche partitioning: Example of a neotropical rainforest bat community. Revue d’ Ecologie. Terre et Vie, 6(2), 149–166.Google Scholar
  7. Depraetere, M., Pavoine, S., Jiguet, F., Gasc, A., Duvail, S., & Sueur, J. (2012). Monitoring animal diversity using acoustic indices: Implementation in a temperate woodland. Ecological Indicators, 13, 46–54.CrossRefGoogle Scholar
  8. Dominoni, D. M., Greif, S., Nemeth, E., & Brumm, H. (2016). Airport noise predicts song timing of European birds. Ecology and Evolution, 6(17), 6151–6159.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dorren, L., Berger, F., Imeson, A., Maier, B., & Rey, F. (2004). Integrity, stability and management of protection forests in the European Alps. Forest Ecology and Management, 195, 165–176.  https://doi.org/10.1016/j.foreco.2004.02.057.CrossRefGoogle Scholar
  10. Eyring, C. F. (1946). Jungle acoustics. The Journal of Acoustical Society of America, 18(2), 257–270.CrossRefGoogle Scholar
  11. Farina, A. (2018). Ecoacoustic codes and ecological complexity. BioSystems, 164, 147–154.CrossRefPubMedGoogle Scholar
  12. Farina, A., & Belgrano, A. (2004). Eco-field: A new paradigm for landscape ecology. Ecological Research, 19, 107–110.CrossRefGoogle Scholar
  13. Farina, A., & Belgrano, A. (2006). The eco-field hypothesis: Toward a cognitive landscape. Landscape Ecology, 21, 5–17.CrossRefGoogle Scholar
  14. Farina, A., & James, P. (2016). The acoustic communities: Definition, description and ecological role. BioSystems, 147, 11–20.CrossRefPubMedGoogle Scholar
  15. Farina, A., & Salutari, P. (2016). Applying the ecoacoustic event detection and identification (EEDI) model to the analysis of acoustic complexity. Journal of Mediterranean Ecology, 14, 13–42.Google Scholar
  16. Farina, A., Pieretti, N., Salutari, P., Tognari, E., & Lombardi, A. (2016). The application of the acoustic complexity indices (ACI) to ecoacoustic event detection and identification (EEDI) modeling. Biosemiotics, 9, 227–246.CrossRefGoogle Scholar
  17. Farina, A., Gage, S. H., & Salutari, P. (2018). Testing the Ecoacoustics event detection and identification (EEDI) model on Mediterranean soundscapes. Ecological Indicators, 85, 698–715.CrossRefGoogle Scholar
  18. Feder, J. (1988). Fractals. New York: Plenum Press.CrossRefGoogle Scholar
  19. Ferguson, D. E. (1971). The sensory basis of orientation in amphibians. Annals of New York Academy of Sciences, 188, 30–36.  https://doi.org/10.1111/j.1749-6632.1971.tb13087.x.CrossRefGoogle Scholar
  20. Frontier, S. (1987). Application of fractal theory to ecology. In S. Legendre & L. Legendre (Eds.), Developments in numerical ecology (pp. 335–378). Nato ASI series, vol. G14. Berlin: Springer-Verlag.Google Scholar
  21. Fuller, R. A., Warren, P. H., & Gaston, K. J. (2007). Daytime noise predicts nocturnal singing in urban robins. Biology Letters, 3, 368–370.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gage, S. H., Napoletano, B. M., & Cooper, M. C. (2001). Assessment of ecosystem biodiversity by acoustic diversity indices. Journal of the Acoustical Society of America, 109, 2430.  https://doi.org/10.1121/1.4744597.
  23. Gil, D., Honarmand, M., Pascual, J., Perez-Mena, E., & Macias Garcia, C. (2014). Birds living near airports advance their dawn chorus and reduce overlap with aircraft noise. Behavioral Ecology, 26, 435–443.CrossRefGoogle Scholar
  24. Grafe, T. U., & Keller, A. (2009). A Bornean amphibian hotspot: The lowland mixed dipterocarp rainforest at Ulu Temburong National Park, Brunei Darussalam. Salamandra, 45, 25–38.Google Scholar
  25. Grafe, U., Monacchi, D. (2014). Detailed Species Recognition of a Circadian Hi-definition Recording in a Primary Dipterocarp Forest. Unpublished study.Google Scholar
  26. Griffin, D. R., & Hopkins, C. D. (1974). Sound audible to migrating birds. Animal Behaviour, 22(3), 672–678.CrossRefGoogle Scholar
  27. Halley, J. M., Hartley, S., Kallimanis, A. S., Kunin, W. E., Lennon, J. J., & Sgardelis, S. P. (2004). Uses and abuses of fractal methodology in ecology. Ecology Letters, 7, 254–271.CrossRefGoogle Scholar
  28. Hastings, H. M., & Sugihara, G. (1993). Fractals. A user's guide for the natural sciences. Oxford: Oxford University Press.Google Scholar
  29. Joo, W., Gage, S. H., & Kasten, E. P. (2011). Analysis and interpretation of variability in soundscapes along an urban-rural gradient. Landscape Urban Planning, 103, 259–276.CrossRefGoogle Scholar
  30. Krause, B. L. (1993). The niche hypothesis. Soundscape Newsletter, 6, 6–10.Google Scholar
  31. Krause, B. L. (2012). The great animal orchestra: Finding the origins of music in the world’s wild places. London: Profile Books Limited.Google Scholar
  32. Krause, B., Gage, S. H., & Joo, W. (2011). Measuring and interpreting the temporal variability in the soundscape at four places in Sequoia National Park. Landscape Ecology, 26, 1247–1256.CrossRefGoogle Scholar
  33. Lemon, R. E., Struger, J., Lechowicz, M. J., & Norman, R. F. (1981). Song features and singing heights of American warblers. Maximization or optimization of distance. Journal of the Acoustical Society of America, 69, 1169–1176.CrossRefGoogle Scholar
  34. Li, J., Du, Q., & Sun, C. (2009). An improved box-counting method for image fractal dimension estimation. Pattern Recognition, 42(11), 2460–2469.CrossRefGoogle Scholar
  35. Mandelbrot, B. B. (1983). The fractal geometry of nature. New York: Freeman.Google Scholar
  36. Mazaris, A. D., Kallimanis, A. S., Chatzigianidis, G., Papadimitriou, K., & Pantis, J. D. (2009). Spatiotemporal analysis of an acoustic environment: Interactions between landscape features and sounds. Landscape Ecology, 24, 817–831.CrossRefGoogle Scholar
  37. Monacchi, D. (2007). Prima Amazonia - portraits of acoustic biodiversity, Glen Ellen: Wild sanctuary, WSI-056.Google Scholar
  38. Monacchi, D. (2008). Field recording in Dzanga-Sangha, Central African Republic and soundscape design for the film “Oka!” directed by Lavinia currier, Roland Films.Google Scholar
  39. Monacchi, D. (2011). Recording and representation in eco-acoustic composition. In: J. Rudi (Ed.), Soundscape in the Arts (pp. 227–250), OSLO: NOTAM.Google Scholar
  40. Monacchi, D. (2013). Fragments of extinction – An eco-acoustic music project on primary rainforest biodiversity. Leonardo Music Journal, 23(Sound Art)s), 23–25.CrossRefGoogle Scholar
  41. Monacchi, D. (2016). A philosophy of eco-acoustics in the interdisciplinary project fragments of extinction. In F. Bianchi & V. J. Manzo (Eds.), Environmental sound artists (pp. 159–168). Oxford: Oxford University Press.Google Scholar
  42. Monacchi, D. (2017). The Sonic Heritage of Ecosystems - Toward a formulation. Proceedings of the SOIMA International Conference Unlocking Sound and Image Heritage, Brussels: ICCROM. ISBN 978–92–9077-264.  https://doi.org/10.18146/soima2015
  43. Morley, R. J. (2000). Origin and evolution of tropical rain forests. Chichester: John Wiley and Sons.Google Scholar
  44. Morse, D. R., Lawton, J. H., Dodson, M. M., & Williamson, M. H. (1985). Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature, 314, 731–733.CrossRefGoogle Scholar
  45. Morton, E.S. (1970). Ecological sources of selection on avian sounds. Ph.D. diss. Yale University.Google Scholar
  46. Morton, E. (1975). Ecological sources of selection on avian sounds. The American Naturalist, 109(965), 17–34.CrossRefGoogle Scholar
  47. Mullet, T. C., Farina, A., & Gage, S. H. (2017). The acoustic habitat hypothesis: An ecoacoustics perspective on species habitat selection. Biosemiotics, 10, 319–336.CrossRefGoogle Scholar
  48. Pieretti, N., Farina, A., & Morri, D. (2011). A new methodology to infer the singing activity of an avian community: The acoustic complexity index (ACI). Ecological Indicators, 11, 868–873.CrossRefGoogle Scholar
  49. Pieretti, N., Duarte, M.H.L., Sousa-Lima,R.S., Rodrigues, M., Young, R.J., Farina, A. (2015). Determining sampling schemes for passive acoustic studies in different tropical ecosystems. Tropical Conservation Science, 8(1), 215–234.Google Scholar
  50. Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L., Napoletano, B. M., Gage, S. H., & Pieretti, N. (2011). Soundscape ecology: The science of sound in the landscape. BioScience, 61, 203–216.CrossRefGoogle Scholar
  51. Qi, J., Gage, S. H., Joo, W., Napoletano, B. N., & Biswas, S. (2008). In W. Ji (Ed.), Wetland and water resource modeling and assessment Soundscape characteristics of an environment: A new ecological indicator of ecosystem health (pp. 201–211). New York: CRC Press.Google Scholar
  52. Sinsch, U., Lümkemann, K., Rosar, K., Schwarz, C., & Dehling, M. (2012). Acoustic niche partitioning in an anuran community inhabiting an Afromontane wetland (Butare, Rwanda). African Zoology, 47(1), 60–73.  https://doi.org/10.1080/15627020.2012.11407524.CrossRefGoogle Scholar
  53. Sugihara, G., & May, R. M. (1990). Applications of fractals in ecology. TREE, 5, 79–86.PubMedGoogle Scholar
  54. Tolimieri, N., Jeffs, A., & Montgomery, J. C. (2000). Ambient sound as a cue for navigation by the pelagic larvae of reef fishes. Marine Ecology Progress Series, 207, 219–224.CrossRefGoogle Scholar
  55. Tucker, D., Gage, S. H., Williamson, I., & Fuller, S. (2014). Linking ecological condition and the soundscape in fragmented Australian forests. Landscape Ecology, 29(4), 745–758.CrossRefGoogle Scholar
  56. Ward, P., & Zahavi, A. (1972). The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis, 115, 517–534.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Conservatorio Gioacchino RossiniPesaroItaly
  2. 2.Department of Pure and Applied SciencesUrbino UniversityUrbinoItaly

Personalised recommendations