The Mechanism for Mimicry: Instant Biosemiotic Selection or Gradual Darwinian Fine-Tuning Selection?

Abstract

Biological mimicry is regarded by many as a textbook illustration of Darwin’s idea of evolution by random mutation followed by differential selection of reproductively fit specimens, resulting in gradual phenotypic change in a population. In this paper, I argue that some cases of so-called mimicry are probably merely look-a-likes and do not gain an advantage due to their similarity in appearance to something else. In cases where a similar appearance does provide a benefit, I argue that it is possible that these forms of mimicry were created in a single generation. An interpretive response to an appearance as a sign can make a new structure perform drastically differently in an environment. In such cases, Darwin’s natural selection mechanism only helps to explain gradual the spread of these new forms, not the creation of them. I argue that biosemiosis should be regarded as a much more powerful mechanism for affecting evolutionary trajectories than the gradualist view allows. I focus on two cases of butterfly mimicry: the Viceroy (Nymphalidae: Limenitis archippus) and Monarch (Nymphalidae: Danaus plexippus) butterflies, supposed Müllerian mimics, and deadleaf mimic butterflies (Kallima).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    Such mimicry comes in various forms, Müllerian Convergence, Batesian-Müllerian spectrum, quasi-Batesian mimicry, arithmetic mimicry or auto mimicry, and may involve an edibility spectrum from palatable to highly noxious, and palatability may be affected by food sources. See Maran (2015).

  2. 2.

    The misinterpretation of a mimic as a sign may also be made by potential mate, as in the case of wasp-mimicking orchids, or by potential prey, as in the case of the live bait-mimicking angler fish.

  3. 3.

    Whether or not Turing patterns and the equations used to describe them were equivalent to the equations that could describe biological patterns was a subject of debate and doubt for many years. Sheth et al. (2012) has finally provided evidence of a hypothetical Turing system involving Hox genes, and Raspopovic et al. (2014) confirms Sheth et al. (2012) revealing which signaling molecules act as the Turing system.

  4. 4.

    Closed Wings

    https://www.youtube.com/watch?v=zDWMtRIk8zI39 seconds

    https://www.youtube.com/watch?v=VEz7X8zhe0g42 seconds

    https://www.youtube.com/watch?v=TEaPkKQqMdg17 seconds

    Beating Wings

    https://www.youtube.com/watch?v=AdpXvAc7GTI30 seconds (same butterfly as above)

    https://www.youtube.com/watch?v=vVD9-SUdYNg23 seconds

    https://www.youtube.com/watch?v=VCGnaas5XdM&t=189s4 min 39 seconds

    https://www.youtube.com/watch?v=wzc3CZwpaQQ24

    https://www.youtube.com/watch?v=w8snsyUa0qk17 seconds

    https://www.youtube.com/watch?v=QlZ7vONfsk81:08

References

  1. Alexander, V. (2001). Neutral evolution and aesthetics: Vladimir Nabokov and insect mimicry. Working Papers Series 01-10-057. Santa Fe: Santa Fe Institute.

  2. Alexander, V. (2003). Nabokov, teleology, and insect mimicry. Nabokov Studies, 7(1), 177–213.

    Google Scholar 

  3. Alexander, V. (2016). Chance, nature’s practical jokes, and the “non-utilitarian delights” of butterfly mimicry. In S. Blackwell & K. Johnson (Eds.), Fine lines: Vladimir Nabokov’s scientific art (pp. 225–234). New Haven: Yale University Press.

    Google Scholar 

  4. Bard, J. (1977). A unity underlying the different zebra striping patterns. Journal of Zoology, 183(4), 527–539.

    Google Scholar 

  5. Bard, J. (1981). A model for generating aspects of zebra and other mammalian coat patterns. Journal of Theoretical Biology, 93(2), 363–385.

    CAS  PubMed  Google Scholar 

  6. Boyd, B. (2000). Nabokov’s butterflies: Unpublished and uncollected writings. New York: Beacon Press.

    Google Scholar 

  7. Brower, J. V. Z. (1958). Experimental studies of mimicry in some north American butterflies. I. The monarch, Danaus plexippus and viceroy, Limenitis archippus. Evolution, 12(1), 32–47.

    Google Scholar 

  8. Chamberlain, N., Hill, R., Kapan, D., Gilbert, L., & Kronforst, M. (2009). Polymorphic butterfly reveals the missing link in ecological speciation. Science, 326(5954), 847–850.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dean, B. (1902). A case of mimicry outmimicked? Concerning Kallima butterflies in museums. Science, 16(412), 832–883.

    CAS  PubMed  Google Scholar 

  10. Eimer, T. (1897). Orthogenesis der Schmetterlinge [Orthogenesis of Butterflies: A Proof of Specifically Directed Development and Impotence of Natural Selection in Species Formation; At the same time a reply to August Weismann]. Leipzig: Englemann.

    Google Scholar 

  11. Ffrench-Constant, R., & Koch, P. (2003). Mimicry and melanism in swallowtail butterflies: Towards a molecular understanding. In C. Boggs, W. Watt, & P. Ehrlich (Eds.), Ecology and Evolution Taking Flight: Butterflies as Model Systems (pp. 259–279). Chicago: University of Chicago Press.

    Google Scholar 

  12. Fisher, R. (1925). Statistical methods for research workers. Edinburgh: Oliver and Boyd.

    Google Scholar 

  13. Fisher, R. (1930). The Genetical theory of natural selection. New York: Clarendon Press.

    Google Scholar 

  14. Gasmi, L., Boulain, H., Gauthier, J., Hua-Van, A., Musset, K., Jakubowska, A. K., Aury, J.-M., Volkoff, A.-N., Huguet, E., Herrero, S., & Drezen, J.-M. (2015). Recurrent domestication by lepidoptera of genes from their parasites mediated by bracoviruses. PLoS Genetics, 11(9), e1005470.

    PubMed  PubMed Central  Google Scholar 

  15. Goldschmidt, R. (1940). The material basis of evolution. New Haven: Yale University Press.

    Google Scholar 

  16. Gould, S., & Lewontin, R. (1979). The spandrels of san Marco and the panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society B: Biological Sciences, 205(1161), 581–598.

    CAS  Google Scholar 

  17. Igarashi, S., & Fukuda, H. (2000). The Life Histories of Asian Butterflies 2. Tokyo: Tokai University Press.

    Google Scholar 

  18. Ioannidis, J. (2005). Why most published research findings are false. PLoS Medicine, 2(8), e 0020124.

    Google Scholar 

  19. Jordaan, F. (2009). Photo under creative commons. Available at https://www.flickr.com/photos/fjordaan/4209283247/in/set-72157622989071863/. Accessed 18 February 2019

  20. Kayser, H. (1985). Pigments. In G. A. Kerkut & L. I. Gilbert (Eds.), Comprehensive insect physiology, biochemistry, and pharmacology (Vol. 10, pp. 367–415). New York: Pergamon Press.

    Google Scholar 

  21. Kleisner, K. (2010). Re-semblance and re-evolution: Paramorphism and semiotic co-option may explain the re-evolution of similar phenotypes. Sign Systems Studies, 38(1/4), 378–392.

    Google Scholar 

  22. Kull, K. (2014). Adaptive evolution without natural selection. Biological Journal of the Linnean Society, 112(2), 287–294.

    Google Scholar 

  23. Kull, K. (2016). The biosemiotic concept of the species. Biosemiotics, 9(1), 61–71.

    Google Scholar 

  24. Maran, T. (2015). Scaffolding and mimicry: A semiotic view of the evolutionary dynamics of mimicry systems. Biosemiotics, 8(2), 211–222.

    Google Scholar 

  25. Maran, T. (2017). Mimicry and meaning: Structure and semiotics of biological mimicry. Dordrecht: Springer.

    Google Scholar 

  26. Meinhardt, H. (1982). Models of biological pattern formation. London: Academic Press.

    Google Scholar 

  27. Meinhardt, M., & Gierer, A. (1974). Application of a theory of biological pattern formation based on lateral inhibition. Journal of Cell Science, 15(2), 321–346.

  28. Meinhardt, H., & Gierer, A. (2000). Pattern formation by local self-activation and lateral inhibition. BioEssays, 22(8), 753–760.

    CAS  PubMed  Google Scholar 

  29. Mullen, S. (2006). Wing pattern evolution and the origins of mimicry among north American admiral butterflies (Nymphalidae: Limenitis). Molecular Phylogenetics and Evolution, 39(3), 747–758.

    CAS  PubMed  Google Scholar 

  30. Murray, J. (1989). Mathematical biology. New York: Springer-Verlag.

    Google Scholar 

  31. Nijhout, H. F. (1990). A comprehensive model for colour pattern formation in butterflies. Proceedings of the Royal Society of Biology, 239(1294), 81–113.

    Google Scholar 

  32. Nijhout, H. F. (1991). Development and Evolution of Butterfly Wing Patterns. Washington D.C.: Smithsonian.

    Google Scholar 

  33. Nijhout, H. F. (2001). Elements of butterfly wing patterns. Journal of Experimental Zoology, 291(3), 213–225.

    CAS  PubMed  Google Scholar 

  34. Nijhout, H. F., Maini, P. K., Madzvamuse, A., Wathen, A. J., & Sekimura, T. (2003). Pigmentation pattern formation in butterflies: Experiments and models. C. R. Biologies, 326(8), 717–727.

    PubMed  Google Scholar 

  35. Oster, G. (1988). Lateral inhibition models of developmental processes. Mathematical Biosciences, 90(1–2), 265–286.

    Google Scholar 

  36. Pfennig, D., Harcombe, W., & Pfennig, K. (2001). Frequency dependent Batesian mimicry. Nature, 410(6826), 323.

    CAS  PubMed  Google Scholar 

  37. Platt, A., Coppinger, R., & Brower, L. (1971). Demonstration of the selective advantage of mimetic Limenitis butterflies presented to caged avian predators. Evolution, 1(25), 692–701.

    Google Scholar 

  38. Poulton, E. (1913). Mimicry, mutation and Mendelism. Bedrock: A Quarterly Review of Scientific Thought, 2(3), 42–56.

    Google Scholar 

  39. Raspopovic, J., Marcon, L., Russo, L., & Sharpe, J. (2014). Digit patterning is controlled by a bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science, 345(6196), 566–570.

    CAS  PubMed  Google Scholar 

  40. Ritland, D. (1991). Revising a classic butterfly mimicry scenario: Demonstration of Mullerian mimicry between Florida Viceroys (Limenitis archippus floridensis) and queens (Danaus gilippus berenice). Evolution, 45(4), 918–934.

    PubMed  Google Scholar 

  41. Ritland, D., & Brower, L. (1991). The viceroy butterfly is not a batesian mimic. Nature, 350(6318), 497–498.

    Google Scholar 

  42. Rothschild, M. (1978). Hell’s Angels. Antenna, 2(2), 38–39.

    Google Scholar 

  43. Schwanwitsch, B. N. (1924). On the groundplan of the wing-pattern in nymphalids and certain other families of rhopalocerous Lepidopetra. Proceedings of the Zoological Society of London B, 34, 509–528.

    Google Scholar 

  44. Sheth, R., Marcon, L., Bastida, M. F., Junco, M., Quintana, L., Dahn, R., Kmita, M., Sharpe, J., & Ros, M. (2012). Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science, 338(6113), 1476–1480.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Süffert, F. (1927). Zur vergleichende Analyse der Schmetterlingszeichnung. Biologisches Zentralblatt, 47, 385–413.

    Google Scholar 

  46. Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B, 237(641), 37–72.

    Google Scholar 

  47. Turner, J. R. G. (1984). Mimicry: The palatability spectrum and its consequences. In R. I. Vane-Wright & P. R. Ackery (Eds.), Biology of Butterflies (pp. 141–161). Londo: Academic Press.

    Google Scholar 

  48. Vane-Wright, R. I. (1986). White monarchs. Antenna., 10(3), 117–118.

    Google Scholar 

  49. Vila, R., Bell, C., Macniven, R., Goldman-Huertas, B., Ree, R., Marshall, C., Bálint, Z., Johnson, K., Benyamini, D., & Pierce, N. (2011). Phylogeny and palaeoecology of Polyommatus blue butterflies show Beringia was a climate-regulated gateway to the New World. Proceedings of the Royal Society B, 278(1719), 1–8.

    Google Scholar 

  50. Waddington, C. H. (1940). Organisers and Genes. Cambridge: Cambridge University Press.

    Google Scholar 

  51. Wallace, A. (1870). Mimicry, and other protective resemblances among animals. Contributions to the Theory of Natural Selection: A series of essays. London: Macmillan & Co. 45–129.

  52. Wickler, W. (1968). Mimicry in plants and animals. New York: McGraw-Hill.

    Google Scholar 

  53. Zhan, S., Zhang, W., Niitepõld, K., Hsu, J., Fernández Haeger, J., Zalucki, M. P., Altizer, S., de Roode, J. C., Reppert, S., & Kronforst, M. (2014). The genetics of monarch butterfly migration and warning colouration. Nature, 514(7522), 317–321.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. N. Alexander.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alexander, V.N. The Mechanism for Mimicry: Instant Biosemiotic Selection or Gradual Darwinian Fine-Tuning Selection?. Biosemiotics 12, 39–55 (2019). https://doi.org/10.1007/s12304-019-09349-9

Download citation

Keywords

  • Saltationism
  • Turing patterns
  • Mimicry
  • Pattern formation
  • Genus Kallima
  • Mimicry skepticism
  • H. F. Nijhout