Skip to main content
Log in

Viper as a Batesian Model – its Role in an Ecological Community

  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

Appearance of Old world vipers of genus Vipera serves various purposes including crypsis and aposematism. Recent research showed that the zigzag pattern represents strong signal to predators to avoid vipers as a prey. It is also possible that vipers function within ecological community as Batesian model for numerous mimics, including other reptiles, birds, and invertebrates. It is then showed that Batesian models need to have prominent features to sustain the mimicry system. The main modulation of this system is presented here as iconicity. Iconicity is treated as quantitative variable resulting from open dynamic process with multiple inputs, also including iconicity of previous states of system. Batesian mimicry is based on mimics adopting the iconicity of the model. It is an example of ecological facilitation, and as such, it is part of niche construction. Since Batesian mimicry is based on semiotic processes, it is a special case of ecological facilitation, namely semiotic facilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altieri, A. H., van Wesenbeeck, B. K., Bertness, M. D., & Silliman, B. R. (2010). Facilitation cascade drives positive relationship between native biodiversity and invasion success. Ecology, 91, 1269–1275.

    PubMed  Google Scholar 

  • Andrén, C., & Nilson, G. (1981). Reproductive success and risk of predation in normal and melanistic colour morphs of the adder, Vipera berus. Biological Journal of the Linnean Society, 15, 235–246.

    Google Scholar 

  • Aubret, F., & Mangin, A. (2014). The snake hiss: Potential acoustic mimicry in a viper–colubrid complex. Biological Journal of the Linnean Society, 113, 1107–1114.

    Google Scholar 

  • Barnett, J. B., & Cuthill, I. C. (2014). Distance-dependent defensive coloration. Current Biology, 24, R1157–R1158.

    CAS  PubMed  Google Scholar 

  • Bates, H. W. (1862). XXXII. Contributions to an insect Fauna of the Amazon Valley. Lepidoptera: Heliconidæ. Transactions of the Linnean Society of London, 23, 495–566.

    Google Scholar 

  • Bertness, M. D., & Callaway, R. (1994). Positive interactions in communities. Trends in Ecology & Evolution, 9, 191–193.

    CAS  Google Scholar 

  • Bond, A. B. (2007). The evolution of color polymorphism: Crypticity, searching images, and apostatic selection. Annual Review of Ecology, Evolution, and Systematics, 38, 489–514.

    Google Scholar 

  • Brodie, E. D. (1992). Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution, 46, 1284–1298.

    PubMed  Google Scholar 

  • Brooker, R. W., Maestre, F. T., Callaway, R. M., Lortie, C. L., Cavieres, L. A., Kunstler, G., Liancourt, P., Tielbörger, K., Travis, J. M. J., & Anthelme, F. (2008). Facilitation in plant communities: The past, the present, and the future. Journal of Ecology, 96, 18–34.

    Google Scholar 

  • Brown, J. L. (1965). Flicker and intermittent stimulation. Vision and Visual Perception, 1, 251–320.

    Google Scholar 

  • Bruno, J. F., Stachowicz, J. J., & Bertness, M. D. (2003). Inclusion of facilitation into ecological theory. Trends in Ecology & Evolution, 18, 119–125.

    Google Scholar 

  • Caro, T. (2017). Wallace on coloration: Contemporary perspective and unresolved insights. Trends in Ecology & Evolution, 32, 23–30.

    Google Scholar 

  • Clarke, B. (1962). Balanced polymorphism and the diversity of sympatric species. In D. Nichols (Ed.), Taxonomy and geography (pp. 47–70). Oxford: Systematics Association.

    Google Scholar 

  • Cott, H. B. (1940). Adaptive coloration in animals. London: Methuen.

    Google Scholar 

  • Emeneau, M. B. (1948). Taboos on animal names. Language, 24, 56–63.

    Google Scholar 

  • Endler, J. A. (1978). A predator’s view of animal color patterns. Evolutionary Biology, 11, 319–364.

    Google Scholar 

  • Endler, J. A. (1981). An overview of the relationships between mimicry and crypsis. Biological Journal of the Linnean Society, 16, 25–31.

    Google Scholar 

  • Endler, J. A. (1990). On the measurement and classification of colour in studies of animal colour patterns. Biological Journal of the Linnean Society, 41, 315–352.

    Google Scholar 

  • Endler, J. A., & Mappes, J. (2004). Predator mixes and the conspicuousness of aposematic signals. American Naturalist, 163, 532–547.

    PubMed  Google Scholar 

  • Fernández, E. (2014). The role of semiosis in evolution - from biosemiotics to technosemiotics. Gatherings biosemiotics 14, Middlesex University London, 13 pp.

  • Forsman, A., & Ås, S. (1987). Maintenance of colour polymorphism in adder, Vipera berus, populations: A test of a popular hypothesis. Oikos, 50, 13–16.

    Google Scholar 

  • Gans, C. (1961). Mimicry in procryptically colored snakes of the genus Dasypeltis. Evolution, 15, 72–91.

    Google Scholar 

  • Gans, C., & Maderson, P. F. A. (1973). Sound producing mechanisms in recent reptiles: Review and comment. American Zoologist, 13, 1195–1203.

    Google Scholar 

  • Greene, H. W., & McDiarmid, R. W. (1981). Coral snake mimicry: Does it occur? Science, 213, 1207–1212.

    CAS  PubMed  Google Scholar 

  • Greene, H. W., & McDiarmid, R. W. (2005). Wallace and Savage: heroes, theories and venomous snake mimicry. In B. I. Crother, C. Guyer, M. H. Wake, & M. A. Donnelly (Eds.), Ecology and evolution in the tropics: a herpetological perspective (pp. 190–208). Chicago: University of Chicago Press.

    Google Scholar 

  • Guilford, T. (1988). The evolution of conspicuous coloration. American Naturalist, 131, S7–S21.

    Google Scholar 

  • Guimaraes, M., & Sawaya, R. J. (2011). Pretending to be venomous: Is a snake’s head shape a trustworthy signal to a predator? Journal of Tropical Ecology, 27, 437–439.

    Google Scholar 

  • Guimaraes, M., & Sawaya, R. J. (2012). The snake head-shape signal: A reply to Valkonen & Mappes. Journal of Tropical Ecology, 28, 125–126.

    Google Scholar 

  • Ham, A. D., Ihalainen, E., Lindström, L., & Mappes, J. (2006). Does colour matter? The importance of colour in avoidance learning, memorability and generalisation. Behavioral Ecology and Sociobiology, 60, 482–491.

    Google Scholar 

  • Hanlon, R. T., Forsythe, J. W., & Joneschild, D. E. (1999). Crypsis, conspicuousness, mimicry and polyphenism as antipredator defences of foraging octopuses on indo-Pacific coral reefs, with a method of quantifying crypsis from video tapes. Biological Journal of the Linnean Society, 66, 1–22.

    Google Scholar 

  • Hebets, E. A., & Papaj, D. R. (2005). Complex signal function: Developing a framework of testable hypotheses. Behavioral Ecology and Sociobiology, 57, 197–214.

    Google Scholar 

  • Hossie, T. J., & Sherratt, T. N. (2013). Defensive posture and eyespots deter avian predators from attacking caterpillar models. Animal Behaviour, 86, 383–389.

    Google Scholar 

  • Hunsinger, E., Root-Gutteridge, H., Cusano, D. A., & Parks, S. E. (2017). A description of defensive hiss types in the flat horned hissing cockroach (Aeluropoda insignis). Bioacoustics, 27, 261–271. https://doi.org/10.1080/09524622.2017.1327371.

    Article  Google Scholar 

  • Ioannou, C. C., & Krause, J. (2009). Interactions between background matching and motion during visual detection can explain why cryptic animals keep still. Biology Letters, 5, 191–193.

    PubMed  PubMed Central  Google Scholar 

  • IUCN (2018). The IUCN red list of threatened species. Version 2017-3. <www.iucnredlist.org> downloaded on 31st January 2018.

  • Jackson, J. F., Ingram, W., III, & Campbell, H. W. (1976). The dorsal pigmentation pattern of snakes as an antipredator strategy: A multivariate approach. American Naturalist, 110, 1029–1053.

    Google Scholar 

  • Kazemi, B., Gamberale-Stille, G., Tullberg, B. S., & Leimar, O. (2014). Stimulus salience as an explanation for imperfect mimicry. Current Biology, 24, 965–969.

    CAS  PubMed  Google Scholar 

  • Kikuchi, D. W., Mappes, J., Sherratt, T. N., & Valkonen, J. K. (2016). Selection for multicomponent mimicry: Equal feature salience and variation in preferred traits. Behavioral Ecology, 27, 1515–1521.

    Google Scholar 

  • Kikvidze, Z., & Callaway, R. M. (2009). Ecological facilitation may drive major evolutionary transitions. Bioscience, 59, 399–404.

    Google Scholar 

  • Kirchner, W. H., & Röschard, J. (1999). Hissing in bumblebees: An interspecific defence signal. Insectes Sociaux, 46, 239–243.

    Google Scholar 

  • Kleisner, K. (2010). Re-semblance and re-evolution: Paramorphism and semiotic co-option may explain the re-evolution of similar phenotypes. Sign Systems Studies, 38, 378–392.

    Google Scholar 

  • Kleisner, K. (2011). Perceive, co-opt, modify, and live! Organism as a Centre of experience. Biosemiotics, 4, 223–241.

    Google Scholar 

  • Kleisner, K. (2015). Semantic organs: The concept and its theoretical ramifications. Biosemiotics, 8, 367–379.

    Google Scholar 

  • Kleisner, K., & Markoš, A. (2005). Semetic rings: Towards the new concept of mimetic resemblances. Theory in Biosciences, 123, 209–222.

    PubMed  Google Scholar 

  • Komárek, S. (2003). Mimicry, aposematism and related phenomena: Mimetism in nature and the history of its study (167 pp). Lincom Europa: München.

    Google Scholar 

  • Krams, I., Vrublevska, J., Koosa, K., Krama, T., Mierauskas, P., Rantala, M. J., & Tilgar, V. (2014). Hissing calls improve survival in incubating female great tits (Parus major). Acta Ethologica, 17, 83–88.

    Google Scholar 

  • Kroon, C. (1975). A possible Müllerian mimetic complex among snakes. Copeia, 1975, 425–428.

    Google Scholar 

  • Lindell, L. E., & Forsman, A. (1996). Sexual dichromatism in snakes: Support for the flicker-fusion hypothesis. Canadian Journal of Zoology, 74, 2254–2256.

    Google Scholar 

  • Lindström, L., Alatalo, R. V., & Mappes, J. (1997). Imperfect Batesian mimicry—the effects of the frequency and the distastefulness of the model. Proceedings of the Royal Society B: Biological Sciences, 264, 149–153.

    Google Scholar 

  • Mallet, J., & Joron, M. (1999). Evolution of diversity in warning color and mimicry: Polymorphisms, shifting balance, and speciation. Annual Review of Ecology and Systematics, 30, 201–233.

    Google Scholar 

  • Maran, T. (2007). Semiotic interpretations of biological mimicry. Semiotica, 2007, 223–248.

    Google Scholar 

  • Maran, T. (2011). Becoming a sign: The mimic’s activity in biological mimicry. Biosemiotics, 4, 243–257.

    Google Scholar 

  • Maran, T., & Kleisner, K. (2010). Towards an evolutionary biosemiotics: Semiotic selection and semiotic co-option. Biosemiotics, 3, 189–200.

    Google Scholar 

  • Merriam-Webster (2018). “Adder.” <www.merriam-webster.com/dictionary/adder> Accessed on 31st January 2018.

  • Moser, A., Graber, C., & Freyvogel, T. A. (1984). Observations sur l’ethologie et l’evolution d’une population de Vipera aspis (L.) au nord du Jura Suisse. Amphibia-Reptilia, 5, 373–393.

    Google Scholar 

  • Neumeyer, R. (1987). Density and seasonal movements of the adder (Vipera berus L. 1758) in a subalpine environment. Amphibia-Reptilia, 8, 259–275.

    Google Scholar 

  • Niskanen, M., & Mappes, J. (2005). Significance of the dorsal zigzag pattern of Vipera latastei gaditana against avian predators. Journal of Animal Ecology, 74, 1091–1101.

    Google Scholar 

  • Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (1996). Niche construction. American Naturalist, 147, 641–648.

    Google Scholar 

  • Öhman, A., & Mineka, S. (2003). The malicious serpent: Snakes as a prototypical stimulus for an evolved module of fear. Current Directions in Psychological Science, 12, 5–9.

    Google Scholar 

  • Pfennig, D. W. (2016). Evolutionary biology: To mimicry and back again. Nature, 534, 184–185.

    CAS  PubMed  Google Scholar 

  • Pfennig, D. W., & Mullen, S. P. (2010). Mimics without models: causes and consequences of allopatry in Batesian mimicry complexes. Proceedings of the Royal Society B: Biological Sciences, 277, 2577–2585.

    PubMed  Google Scholar 

  • Pfennig, D. W., Harcombe, W. R., & Pfennig, K. S. (2001). Frequency-dependent Batesian mimicry. Nature, 410, 323.

    CAS  PubMed  Google Scholar 

  • Pfennig, D. W., Harper, G. R., Brumo, A. F., Harcombe, W. R., & Pfennig, K. S. (2007). Population differences in predation on Batesian mimics in allopatry with their model: Selection against mimics is strongest when they are common. Behavioral Ecology and Sociobiology, 61, 505–511.

    Google Scholar 

  • Pough, F. H. (1976). Multiple cryptic effects of crossbanded and ringed patterns of snakes. Copeia, 1976, 834–836.

    Google Scholar 

  • Pough, F. H. (1988). Mimicry of vertebrates: Are the rules different? American Naturalist, 131, S67–S102.

    Google Scholar 

  • Rabosky, A. R. D., Cox, C. L., Rabosky, D. L., Holmes, I. A., Feldman, A., & McGuire, J. A. (2016). Coral snakes predict the evolution of mimicry across New World snakes. Nature Communications, 7, 11484.

    PubMed  PubMed Central  Google Scholar 

  • Ripple, W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G., Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M. P., Schmitz, O. J., Smith, D. W., Wallach, A. D., & Wirsing, A. J. (2014). Status and ecological effects of the world’s largest carnivores. Science, 343, 1241484.

    PubMed  Google Scholar 

  • Rix, H., & Kümmel, M. (2001). Lexikon der indogermanischen Verben, Die Wurzeln und ihre Primärstammbildungen (822 pp). Dr. Ludwig Reichert Verlag: Wiesbaden.

    Google Scholar 

  • Rodríguez-Robles, J. A., & De Jesús-Escobar, J. M. (2000). Molecular systematics of New World gopher, bull, and pinesnakes (Pituophis: Colubridae), a transcontinental species complex. Molecular Phylogenetics and Evolution, 14, 35–50.

    PubMed  Google Scholar 

  • Rowe, M. P., Coss, R. G., & Owings, D. H. (1986). Rattlesnake rattles and burrowing owl hisses: A case of acoustic Batesian mimicry. Ethology, 72, 53–71.

    Google Scholar 

  • Ruxton, G. D., Franks, D. W., Balogh, A. C. V., & Leimar, O. (2008). Evolutionary implications of the form of predator generalization for aposematic signals and mimicry in prey. Evolution, 62, 2913–2921.

    PubMed  Google Scholar 

  • Santos, J. C., Baquero, M., Barrio-Amorós, C., Coloma, L. A., & Erdtmann, L. K. (2014). Aposematism increases acoustic diversification and speciation in poison frogs. Proceedings of the Royal Society B: Biological Sciences, 281, 20141761.

    PubMed  Google Scholar 

  • Santos, X., Azor, J. S., Cortés, S., Rodríguez, E., Larios, J., & Pleguezuelos, J. M. (2017). Ecological significance of dorsal polymorphism in a Batesian mimic snake. Current Zoology. https://doi.org/10.1093/cz/zox058.

  • Sherbrooke, W. C., & Westphal, M. F. (2006). Responses of greater roadrunners during attacks on sympatric venomous and nonvenomous snakes. Southwest Naturalist, 51, 41–47.

    Google Scholar 

  • Sherratt, T. N., & Beatty, C. D. (2003). The evolution of warning signals as reliable indicators of prey defense. American Naturalist, 162, 377–389.

    PubMed  Google Scholar 

  • Shiffrar, M., & Lorenceau, J. (1996). Increased motion linking across edges with decreased luminance contrast, edge width and duration. Vision Research, 36, 2061–2067.

    CAS  PubMed  Google Scholar 

  • Shine, R., & Madsen, T. (1994). Sexual dichromatism in snakes of the genus Vipera: A review and a new evolutionary hypothesis. Journal of Herpetology, 28, 114–117.

    Google Scholar 

  • Smal-Stocki, R. (1950). Taboos on animal names in Ukrainian. Language, 26, 489–493.

    Google Scholar 

  • Smith, R. H. (1974). Is the slow worm a Batesian mimic? Nature, 247, 571–572.

    Google Scholar 

  • Souchet, J., & Aubret, F. (2016). Revisiting the fear of snakes in children: The role of aposematic signalling. Scientific Reports, 6, 37619.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Speybroeck, J., Beukema, W., Bok, B., & Van Der Voort, J. (2016). Field guide to the amphibians and reptiles of Britain and Europe (432 pp). London: Bloomsbury Publishing.

    Google Scholar 

  • Stachowicz, J. J. (2001). Mutualism, facilitation, and the structure of ecological communities: Positive interactions play a critical, but underappreciated, role in ecological communities by reducing physical or biotic stresses in existing habitats and by creating new habitats on. AIBS Bulletin, 51, 235–246.

    Google Scholar 

  • Štěrbová, L. (2017). Etymologie vybraných názvů zvířat v bulharštině (59 pp). Brno: Masaryk University.

    Google Scholar 

  • Stevens, M. (2007). Predator perception and the interrelation between different forms of protective coloration. Proceedings of the Royal Society B: Biological Sciences, 274, 1457–1464.

    PubMed  Google Scholar 

  • Sweet, S. S. (1985). Geographic variation, convergent crypsis and mimicry in gopher snakes (Pituophis melanoleucus) and western rattlesnakes (Crotalus viridis). Journal of Herpetology, 19, 55–67.

    Google Scholar 

  • Titcomb, G. C., Kikuchi, D. W., & Pfennig, D. W. (2014). More than mimicry? Evaluating scope for flicker-fusion as a defensive strategy in coral snake mimics. Current Zoology, 60, 123–130.

    Google Scholar 

  • Tullberg, B. S., Merilaita, S., & Wiklund, C. (2005). Aposematism and crypsis combined as a result of distance dependence: Functional versatility of the colour pattern in the swallowtail butterfly larva. Proceedings of the Royal Society B: Biological Sciences, 272, 1315–1321.

    PubMed  Google Scholar 

  • Valkonen, J. K., & Mappes, J. (2012). Comments on Guimarães & Sawaya. Pretending to be venomous: Is a snake’s head shape a trustworthy signal to a predator? Journal of Tropical Ecology, 28, 123–124.

    Google Scholar 

  • Valkonen, J. K., & Mappes, J. (2014). Resembling a viper: Implications of mimicry for conservation of the endangered smooth snake. Conservation Biology, 28, 1568–1574.

    PubMed  Google Scholar 

  • Valkonen, J., Niskanen, M., Björklund, M., & Mappes, J. (2011a). Disruption or aposematism? Significance of dorsal zigzag pattern of European vipers. Evolutionary Ecology, 25, 1047–1063.

    Google Scholar 

  • Valkonen, J. K., Nokelainen, O., & Mappes, J. (2011b). Antipredatory function of head shape for vipers and their mimics. PLoS One, 6, e22272.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vallin, A., Jakobsson, S., Lind, J., & Wiklund, C. (2005). Prey survival by predator intimidation: An experimental study of peacock butterfly defence against blue tits. Proceedings of the Royal Society of London B: Biological Sciences, 272, 1203–1207.

    Google Scholar 

  • Waldbauer, G. P., & Sternburg, J. G. (1987). Experimental field demonstration that two aposematic butterfly color patterns do not confer protection against birds in northern Michigan. American Midland Naturalist, 118, 145–152.

    Google Scholar 

  • Wang, M.-Y., Vasas, V., Chittka, L., & Yen, S.-H. (2017). Sheep in wolf’s clothing: Multicomponent traits enhance the success of mimicry in spider-mimicking moths. Animal Behaviour, 127, 219–224.

    Google Scholar 

  • Werner, Y. L. (1983). Behavioural triangulation of the head in three boigine snakes: Possible cases of mimicry. Israel Journal of Zoology, 32, 205–228.

    Google Scholar 

  • Werner, Y. L., & Frankenberg, E. (1982). Head triangulation in two colubrine snakes: Probable behavioural reinforcement of Batesian mimicry. Israel Journal of Zoology, 31, 137–150.

    Google Scholar 

  • Wertheimer, M. (1912). Experimentelle studien uber das sehen von bewegung. Zeitschrift fur Psychologie, 61, 161–265.

    Google Scholar 

  • Wilmers, C. C., Crabtree, R. L., Smith, D. W., Murphy, K. M., & Getz, W. M. (2003). Trophic facilitation by introduced top predators: Grey wolf subsidies to scavengers in Yellowstone National Park. Journal of Animal Ecology, 72, 909–916.

    Google Scholar 

  • Wolf, M., & Werner, Y. L. (1994). The striped colour pattern and striped/non-striped polymorphism in snakes (Reptilia: Ophidia). Biological Reviews, 69, 599–610.

    Google Scholar 

  • Wüster, W., Allum, C. S. E., Bjargardóttir, I. B., Bailey, K. L., Dawson, K. J., Guenioui, J., Lewis, J., McGurk, J., Moore, A. G., Niskanen, M., & Pollard, C. P. (2004). Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proceedings of the Royal Society B: Biological Sciences, 271, 2495–2499.

    PubMed  Google Scholar 

Download references

Acknowledgements

Work is part of the research goal VaV10/300/PM DKRVO 2017/05 of Czech Ministry of Culture. I would like to dedicate this work to Kristýna Eliášová.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindřich Brejcha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brejcha, J. Viper as a Batesian Model – its Role in an Ecological Community. Biosemiotics 12, 25–38 (2019). https://doi.org/10.1007/s12304-019-09347-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-019-09347-x

Keywords

Navigation