Advertisement

Biosemiotics

, Volume 11, Issue 1, pp 27–40 | Cite as

Object Discernment by “A Difference Which Makes a Difference”

  • Jaime F. Cárdenas-García
  • Diego Romero Castro
  • Bruno Soria de Mesa
Article

Abstract

Gregory Bateson is well known for defining information by stating “In fact what we mean by information – the elementary unit of information – is a difference which makes a difference…” This conceptual perspective has the merit of simplicity and generality. Simplicity, in addressing the complexity of information. Generality, in seeking applicability to any and every field of human experience. The purpose of this paper is to focus the applicability of this conceptual approach by Bateson and use it to perform a calculation of taking the difference between two grey-level digital images that are shifted one relative to the other. The digital images take the place of the field of view that a human being would have access through her sense of vision at two different spatial/temporal instances. The results show that it is possible to highlight the edges of the objects under scrutiny, as well as to highlight other differences within the object. Bateson’s “difference that makes a difference” would seem to provide a first step in the elusive meaning making process of humans.

Keywords

Gregory Bateson Difference Idea Edge detection Digital image Image processing 

Notes

Acknowledgements

The authors would like to acknowledge the reviewers for their comments and suggestions, which have helped to significantly improve the content of this paper.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Bateson, G. (1972). Steps to an ecology of mind. Northvale: Jason Aronson Inc..Google Scholar
  2. Blanchet, G., & Charbit, M. (2006). Digital signal and image processing using Matlab. London, UK: ISTE Ltd.CrossRefGoogle Scholar
  3. Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679–698.  https://doi.org/10.1109/TPAMI.1986.4767851.CrossRefGoogle Scholar
  4. Cardenas-Garcia, J. F. (2013). Distributed cognition: An ectoderm-centric perspective. Biosemiotics, 6(3), 337–350.CrossRefGoogle Scholar
  5. Cardenas-Garcia, J. F., & Ireland, T. (2017). Human distributed cognition from an organism-in-its-environment perspective. Biosemiotics, 10(2), 265–278.  https://doi.org/10.1007/s12304-017-9293-8.CrossRefGoogle Scholar
  6. Gibson, J. J. (1986). The ecological approach to visual perception. New York: Psychology Press.Google Scholar
  7. Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing (3rd ed.). Upper Saddle River: Prentice Hall.Google Scholar
  8. Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2009). Digital image processing using MATLAB (2nd ed.). S.I.: Gatesmark Pub.Google Scholar
  9. Guddemi, P. (2007). Toward Batesonian sociocybernetics: From Naven to the mind beyond the skin. Kybernetes, 36(7–8), 905–914.CrossRefGoogle Scholar
  10. Hoffmeyer, J. (2007). Semiotic scaffolding of living systems. In M. Barbieri (Ed.), Introduction to biosemiotics: The new biological synthesis (pp. 149–166). Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
  11. Hoffmeyer, J. (2015). Semiotic scaffolding: A unitary principle gluing life and culture together. Green Letters, 19(3), 243–254.  https://doi.org/10.1080/14688417.2015.1058175.CrossRefGoogle Scholar
  12. Hoffmeyer, J., & Emmeche, C. (1991). Code-duality and the semiotics of nature. In M. Anderson & F. Merrell (Eds.), On semiotic modeling (pp. 117–166). Berlin and New York: Mouton de Gruyter.Google Scholar
  13. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160(1), 106–154.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jähne, B. (2005). Digital image processing (6th ed.). Berlin: Springer-Verlag.Google Scholar
  15. Jehee, J. F. M., & Ballard, D. H. (2009). Predictive feedback can account for biphasic responses in the lateral geniculate nucleus. PLoS Computational Biology, 5(5), e1000373.  https://doi.org/10.1371/journal.pcbi.1000373.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kelly, D. H. (1961). Visual responses to time-dependent stimuli.* I. Amplitude sensitivity measurements†. Journal of the Optical Society of America, 51(4), 422–429.  https://doi.org/10.1364/JOSA.51.000422.CrossRefPubMedGoogle Scholar
  17. Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16(1), 37–68.CrossRefPubMedGoogle Scholar
  18. Meister, M., & Berry, M. J., II (1999). The neural code of the retina. Neuron, 22(3), 435–450,  https://doi.org/10.1016/S0896-6273(00)80700-X.
  19. Nixon, M. S., & Aguado, A. S. (2002). Feature extraction and image processing. Woburn: Newnes.Google Scholar
  20. Pratt, W. K. (2007). Digital image processing: PIKS Scientific inside (4th ed.). Hoboken: Wiley-Interscience.Google Scholar
  21. Ratliff, F. (1965). Mach bands: Quantitative studies on neural networks in the retina. San Francisco: Holden-Day.Google Scholar
  22. Ratliff, F., & Riggs, L. A. (1950). Involuntary motions of the eye during monocular fixation. Journal of Experimental Psychology, 40(6), 687–701.  https://doi.org/10.1037/h0057754.CrossRefPubMedGoogle Scholar
  23. Rodieck, R. W. (1965). Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Research, 5(12), 583–601.CrossRefPubMedGoogle Scholar
  24. Srinivasan, M. V., Laughlin, S. B., & Dubs, A. (1982). Predictive coding: A fresh view of inhibition in the retina. Proceedings of the Royal Society of London. Series B. Biological Sciences, 216(1205), 427–459.  https://doi.org/10.1098/rspb.1982.0085.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Jaime F. Cárdenas-García
    • 1
  • Diego Romero Castro
    • 2
  • Bruno Soria de Mesa
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of Maryland – Baltimore CountyBaltimoreUSA
  2. 2.Facultad de Jurisprudencia y Ciencias Sociales y PolíticasUniversidad de Guayaquil, Ciudadela Universitaria Salvador AllendeGuayaquilEcuador
  3. 3.Escuela de Medicina, Facultad de Salud Pública, Escuela Superior Politécnica de ChimborazoRiobambaEcuador

Personalised recommendations