Skip to main content
Log in

From the Cellular Standpoint: is DNA Sequence Genetic ‘Information’?

  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

Constructivist biosemiotics foundations (CBF) imply the first-person basis of cognition. CBF are developed by the biology of cognition, relational biology, enactive approach, ecology of mind, second order cybernetics, genetic epistemology, gestalt, ecological perception and affordances, and active inference by minimization of free energy. CBF reject the idea of an objective independent reality to be represented (cognitivism) by information processing (computationalism) in order to be the fittest (adaptationism). CBF assumes that perception is the behavioral configuration of an object and objects are tokens for eigen-behaviors. Cognition takes place in the organism-environment structural coupling during the ontogeny and phylogeny of all biological unities including unicellular organisms. Therefore, if exogenous DNA particles (virus or trans-sequence) are just tokens for the cell signalling eigen-behaviors, if there is no ‘information’ in the DNA sequence, how can we explain that the same virus or trans- sequence is associated with a similar phenotype? We call this ‘exogenomic problem’. With this basic example, but sufficiently generic to the whole biological world, we agree respectively with Autopoiesis, (Metabolism, Repair)-system, and Gaia theory: i) ‘Information, code and meaning’ in the DNA sequence belong to the domain of the observer’s description. ii) Genetic ‘information’ is not a program or algorithmic software in DNA sequence. Rather it is a microphysical observable mode of eigen-behaviors in biological unities. iii) The transfer and acquisition of DNA particles is a biospheric phenomenon that maintains its homeorhesis, symbiotic and biosemiotic entailment. Based on the theoretical and experimental results of these theories, it is concluded that genetic ‘information’ is not a genomic sequence, nor any kind of information (algorithmic or semantic), but for the cell DNA must embody physical forcing. Genetic characters are the effects and not the cause of phenotype and DNA particles do not ‘use or manipulate’ cellular metabolism. Rather, any cellular configuration change that occurred before or during DNA perturbation (coincident or not with the observation of certain phenotype) is determined on the basis of the cellular standpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The nature of the phenomenon of life can be explained, among other important characterizations, as a physical realization of the (Metabolism, Repair)-system, Autopoiesis or Gaia. While Autopoesis is a descriptive and generative process of the living, (M,R)-system presents a series of more rigorous formal explanatory propositions. Both, (M,R)-system and Autopoiesis are equivalent models of organisms at cellular scale (Zaretzky and Letelier 2002, Letelier et al. 2003) whereas Gaia exists at the planetary scale. Accordingly, (M,R)- Autopoiesis of the biosphere as a unity is biologically Gaia (Margulis and Sagan 1986; Mikulecky 2000). Although biological unities produce themselves autonomously from the milieu interior (Bernard 1878), no organism is capable to be alive in a non-biological environment. In other words, to be realized the living process unambiguously needs a ‘self-centered world’ = umwelt (von Uexküll 1909), which can be equivalent to Gaia theory = bio habitable environment by and for the biosphere (Lovelock and Margulis 1974). That is to say, the milieu interior-umwelt structural coupling or shortly (M, R)-Gaia Autopoiesis is sine qua non for the living individuation. The individuation of (M, R)-Gaia Autopoiesis may be seen as the ‘pattern which connects’ the biological world and their multiplicity of metabolic events, scales and distinctions.

  2. The reason why organisms are called unities instead of wholes is that the assumption of a whole presupposes the assumption of parts, which leads to a mechanistic (fractionable) view of life. The phrase ‘the whole is more than the sum of its parts’ indicates that the synthesis of the biological unity is inverse to the analysis of its parts (Rosen 1998). This is a very Kantian approach to a biological being. The enterprise of molecular, system, synthetic, and computational biology looks for the ‘exact connections’ to resynthesize (self-organize) a biological unity by means of analyzing the parts and its computable connections. Maturana and Rosen take distance to this Kantian approach. While Rosen calls a biological being a (M,R)-system which is non-fractionable, thus non-computable (Rosen 1998), Maturana calls an autopoietic unity in distinction with unit (Maturana 1979). Unit refers to inert particles. A virus can be a unit, but a cell is a unity because of its invariant (M,R)-autopoiesis, which, likewise, is a description that differs from the idea of self-organization (Maturana 2002). I emphasize that ‘parts’ are parts of ‘units’ and ‘fractions’ are fractions of ‘unities’. The denotation is quite different. Parts can be analyzed in isolation from the whole (of the mechanical system), but fractions cannot be completely understood in isolation or they can display few possible detectable ‘functions’ in isolation of infinite posibilities within the biological unity.

  3. A Mendelian factor is not a specific molecular sequence, but it refers to the ‘active site’ that is not fractionable or isolable from the system-unity. A Mendelian factor exerts physical forces within a larger system while the inertial mass of the system impresses forces over it (for details see Rosen 1994, 1998 chapter 1).

References

  • Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 5819, 1709–1712.

    Article  Google Scholar 

  • Bateson, G. (1972). Steps to an ecology of mind. San Francisco: Chandler Pub. Co..

    Google Scholar 

  • Bateson, G. (1979). Mind and nature: A necessary unity. New York: Dutton.

    Google Scholar 

  • Bateson, G., & Bateson, M. C. (1986). Angels fear: Towards an epistemology of the sacred. New York: Macmillan.

    Google Scholar 

  • Bernard, C. (1878). Leçons sur les phénomènes de la vie, communs aux animaux et aux végétaux. Paris: Baillière.

    Book  Google Scholar 

  • Bohr, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 48(8), 696.

    Article  CAS  Google Scholar 

  • Brunette, T. J., Parmeggiani, F., Huang, P.-S., Bhabha, G., Ekiert, D. C., Tsutakawa, S. E., Hura, G. L., et al. (2015). Exploring the repeat protein universe through computational protein design. Nature, 7583, 580–584.

    Article  Google Scholar 

  • Bussard, A. E. (2005). A scientific revolution? The prion anomaly may challenge the central dogma of molecular biology. The EMBO Journal, 8, 691–694.

    Article  Google Scholar 

  • Chernoff, Y. O. (2001). Mutation processes at the protein level: Is lamarck back? Mutation Research, 1, 39–64.

    Article  Google Scholar 

  • Cobb, M. (2013). 1953: When Genes Became “Information”. Cell, 153(3), 503–506.

    Article  CAS  PubMed  Google Scholar 

  • Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., et al. (2013). Multiplex genome engineering using CRISPR/cas systems. Science, 6121, 819–823.

    Article  Google Scholar 

  • Eungdamrong, N. J., & Iyengar, R. (2004). Modeling cell signaling networks. Biology of the Cell, 96(5), 355–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friston, K. (2013). Life as we know it. The Journal of the Royal Society Interface, 10(86), 475. doi:10.1098/rsif.2013.0475.

    Article  Google Scholar 

  • Friston, K., Adams, R. A., Perrinet, L., & Breakspear, M. (2012). Perceptions as hypotheses: Saccades as experiments. Frontiers in Psychology, 3, 151. doi:10.3389/fpsyg.2012.00151.

    PubMed  PubMed Central  Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception. Oxfordshire: Lawrence Erlbaum Associates.

  • Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R.-Y., Algire, M. A., Benders, G. A., et al. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 5987, 52–56.

    Article  Google Scholar 

  • Ho, M.-W. (2013). The new genetics and natural versus artificial genetic modification. Entropy, 15(11), 4748–4781.

    Article  CAS  Google Scholar 

  • Hoffmeyer, J. (2008). A legacy for living systems: Gregory Bateson as precursor to biosemiotics. New York: Springer.

    Book  Google Scholar 

  • Horvath, P., & Barrangou, R. (2010). CRISPR/cas, the immune system of bacteria and archaea. Science, 5962, 167–170.

    Article  Google Scholar 

  • Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-cas9 for genome engineering. Cell, 6, 1262–1278.

    Article  Google Scholar 

  • Jaenisch, R., & Mintz, B. (1974). Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. PNAS, 4, 1250–1254.

    Article  Google Scholar 

  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A 'program'mable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 6096, 816–821.

    Article  Google Scholar 

  • Karas, B. J., Jablanovic, J., Sun, L., Ma, L., Goldgof, G. M., Stam, J., Ramon, A., et al. (2013). Direct transfer of whole genomes from bacteria to yeast. Nature Methods, 5, 410–412.

    Article  Google Scholar 

  • Leguizamón, C. A. (1975). A theory for environmental systems. Bulletin of Mathematical Biology, 37, 675–689.

    Article  PubMed  Google Scholar 

  • Letelier, J. C., Marın, G., & Mpodozis, J. (2003). Autopoietic and (M, R)-systems. Journal of Theoretical Biology, 222(2), 261–272.

    Article  PubMed  Google Scholar 

  • Louie, A. H. (2013). The reflection of life. New York: Springer-Verlag.

    Book  Google Scholar 

  • Lovelock, J. (1979). Gaia: A new look at life on earth. Oxford: Oxford University Press.

    Google Scholar 

  • Lovelock, J. (2005). Gaia: Medicine for an ailing planet. London: Gaia Books.

  • Lovelock, J. E., & Margulis, L. (1974). Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus, 26(1–2), 2–10.

    CAS  Google Scholar 

  • Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., et al. (2013). RNA-guided human genome engineering via cas9. Science, 6121, 823–826.

    Article  Google Scholar 

  • Malyshev, D. A., Dhami, K., Lavergne, T., Chen, T., Dai, N., Foster, J. M., Correa, I. R., et al. (2014). A semi-synthetic organism with an expanded genetic alphabet. Nature, 7500, 385–388.

    Article  Google Scholar 

  • Margulis, L. (1997). Big trouble in biology: Physiological Autopoiesis versus Mechanistic Neo-Darwinism. In L. Margulis & D. Sagan (Eds.), Slanted truths: Essays on Gaia, symbiosis and evolution (pp. 265–282). New York: Springer.

    Chapter  Google Scholar 

  • Margulis, L. (1998). Symbiotic planet: a new look at evolution. New York: Basic Books.

  • Margulis, L., & Sagan, D. (1986). Microcosmos: Four Billion Years of Evolution from our Microbial Ancestors. New York: Summit.

    Google Scholar 

  • Margulis, L., & Sagan, D. (1995). What is life?. Oakland: University of California Press.

  • Maturana, H. R. (1970). Neurophysiology of cognition. In Cognition: A multiple view (pp. 3–23). New Jersey: Spartan books.

    Google Scholar 

  • Maturana, H. R. (1978). Biology of language: The epistemology of reality. In G. Miller & E. Lenneberg (Eds.), Psychology and biology of language and thought: Essays in honor of Eric Lenneberg (pp. 27–63). New York: Academic Press.

    Google Scholar 

  • Maturana, H. R. (1979). The wholeness of the unity: conversations with Heinz von Foerster. Cybernetics Forum, 9(3), 20–26.

    Google Scholar 

  • Maturana, H. R. (1980). Autopoiesis: Reproduction, heredity and evolution. In M. Zeleny (Ed.), Autopoiesis, dissipative structures, and spontaneous social orders (pp. 45–79). Boulder: Westview Press.

    Google Scholar 

  • Maturana, H. R. (1988). Reality: The search for objectivity or the quest for a compelling argument. Irish Journal of Psychology, 1, 25–82.

    Article  Google Scholar 

  • Maturana, H. R. (2000). The nature of the laws of nature. Systems Research and Behavioral Science, 5, 459–468.

    Article  Google Scholar 

  • Maturana, H. R. (2002). Autopoiesis, structural coupling and cognition: a history of these and other notions in the biology of cognition. Cybernetics & Human Knowing, 9(3–4), 5–34.

    Google Scholar 

  • Maturana, H. R., & Mpodozis, J. (1986). Perception: Behavioral configuration of the object. Archivos de Biologia y Medicina Experimental, 3-4, 319–324.

    Google Scholar 

  • Maturana, H. R., & Mpodozis, J. (1992). The origin of species by means of natural drift. Revista Chilena de Historia Natural, 261–310.

  • Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and cognition: The realization of the living. Netherlands: Springer.

    Book  Google Scholar 

  • Mead, M. (1968). Cybernetics of cybernetics. In H. von Foerster (Ed.), Purposive systems (pp. 1–11). New Jersey: Spartan Books.

    Google Scholar 

  • Mesnage, R., Agapito-Tenfen, S. Z., Vilperte, V., Renney, G., Ward, M., Séralini, G. E., et al. (2016). An integrated multi-omics analysis of the NK603 Roundup-tolerant GM maize reveals metabolism disturbances caused by the transformation process. Scientific Reports, 6, 37855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesnage, R., Arno, M., Séralini, G. E., & Antoniou, M. N. (2017). Transcriptome and metabolome analysis of liver and kidneys of rats chronically fed NK603 Roundup-tolerant genetically modified maize. Environmental Sciences Europe, 29(1), 6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikulecky, D. C. (2000). Robert Rosen: The well-posed question and its answer-Why are organisms different from machines? Systems Research and Behavioral Science, 17(5), 419.

    Article  Google Scholar 

  • Montagnier, L., Aïssa, J., Lavallée, C., Mbamy, M., Varon, J., & Chenal, H. (2009). Electromagnetic detection of HIV DNA in the blood of AIDS patients treated by antiretroviral therapy. Interdisciplinary Sciences: Computational Life Sciences, 1(4), 245–253.

  • Morin, E. (1977). La nature de la nature. Paris: Seuil.

    Google Scholar 

  • Morrow, F., Cohen, N., Chang, A., Boyer, W., Goodman, M., & Helling, B. (1974). Replication and transcription of eukaryotic DNA in Esherichia coli. PNAS, 5, 1743–1747.

    Article  Google Scholar 

  • Onuchic, N., Luthey-Schulten, Z., & Wolynes, G. ‬(1997). ‬Theory ‬of protein ‬folding: ‬the ‬energy ‬landscape ‬perspective. Annual Review of Physical Chemistry, 48, 545–600.‬

  • Perdigão, N., Heinrich, J., Stolte, C., Sabir, K. S., Buckley, M. J., Tabor, B., Signal, B., et al. (2015). Unexpected features of the dark proteome. PNAS, 52, 15898–15903.

    Article  Google Scholar 

  • Piaget, J. (1948). La naissance de l'intelligence chez l'enfant. Paris: Delachaux et Niestle, Neuchatel.

    Google Scholar 

  • Piaget, J. (1967). Biologie et connaissance; Essai sur les relations entre les regulations organiques et les processus cognitifs. Paris: Gallimard.

    Google Scholar 

  • Piaget, J. (1975). L'épistémologie génétique. Paris: Presses universitaires de France.

    Google Scholar 

  • Pitkanen, M., & Gariaev, P. (2011). Quantum model for remote replication. DNA Decipher Journal, 1(3), 298–307.

  • Quist, D., & Chapela, I. H. (2001). Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature, 414(6863), 541.

    Article  CAS  PubMed  Google Scholar 

  • Rohwer, F., & Thurber, R. V. (2009). Viruses manipulate the marine environment. Nature, 459(7244), 207.

    Article  CAS  PubMed  Google Scholar 

  • Rohwer, F., Prangishvili, D., & Lindell, D. (2009). Roles of viruses in the environment. Environmental Microbiology, 11(11), 2771–2774.

    Article  PubMed  Google Scholar 

  • Rosen, R. (1960). A quantum-theoretic approach to genetic problems. Bulletin of Mathematical Biology, 22(3), 227–255.

    Google Scholar 

  • Rosen, R. (1974). The role of quantum theory in biology. International Journal of Quantum Chemistry, 8(S1), 229–232.

    Article  Google Scholar 

  • Rosen, R. (1978). Fundamentals of measurement and representation of natural systems. New York: North-Holland Elsevier.

    Google Scholar 

  • Rosen, R. (1985a). Anticipatory systems: Philosophical, mathematical, and methodological foundations. Oxford: Pergamon Press Oxford.

    Google Scholar 

  • Rosen, R. (1985b). Information and cause. In Mintz & Perlmutter (Eds.), Information Processing in Biological Systems (pp. 31–54). New York: Plenum Press.

    Chapter  Google Scholar 

  • Rosen, R. (1991). Life itself: A comprehensive inquiry into the nature, origin, and fabrication of life. New York: Columbia University Press.

  • Rosen, R. (1994). What is biology? Computational Biology and Chemistry, 3, 347–352.

    Article  Google Scholar 

  • Rosen, R. (1998). Essays on life itself. New York: Columbia University Press.

    Google Scholar 

  • Rubin, S. S., Uemura, H., Yoshida, N., & Schenkman, S. (2006). Expression of trypomastigote trans-sialidase in metacyclic forms of Trypanosoma cruzi increases parasite escape from its parasitophorous vacuole. Cellular Microbiology, 12, 1888–1898.

    Article  Google Scholar 

  • Sagan, D. (2010). Introduction: Umwelt after Uexküll. In J. von Uexküll (J. D. O'Neil translated). A Foray Into the Worlds of Animals and Humans: With a Theory of Meaning (p. 3–34). Mineapolis: University of Minnesota Press.

  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Univ of Illinois Press.

  • Short, C. M., & Suttle, C. A. (2005). Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Applied and Environmental Microbiology, 71(1), 480–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simondon, G. (1964). L'individu et sa genèse physico-biologuique: l'individuation à la lumière des notions de forme et d'information. Presses universitaires de France.

  • Thom, R. (1972). Stabilité structurelle et morphogénèse. Essai d'une théorie générale des modèles. Minneapolis: W. A. Benjamin, Incorporated.

  • Thompson, E. (2007). Mind in life: Biology, phenomenology, and the sciences of mind. Cambridge: Belknap Press of Harvard University Press.

    Google Scholar 

  • Tsatsakis, A. M., Nawaz, M. A., Tutelyan, V. A., Golokhvast, K. S., Kalantzi, O. I., Chung, D. H., ... & Chung, G. (2017). Impact on environment, ecosystem, diversity and health from culturing and using GMOs as feed and food. Food and Chemical Toxicology, 107(Part A), 108–121.

  • Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., De Beuckeleer, M., Dean, C., Zabeau, M., et al. (1987). Transgenic plants protected from insect attack. Nature, 6125, 33–37.

    Article  Google Scholar 

  • Van Larebeke, N., Genetello, C., Schell, J., Schilperoort, A., Hermans, A., Hernalsteens, P., & Van Montagu, M. (1975). Acquisition of tumour-inducing ability by non-oncogenic agrobacteria as a result of plasmid transfer. Nature, 255(5511), 742–743.

    Article  PubMed  Google Scholar 

  • Varela, F. (1979). Principles of biological autonomy. New York: North-Holland Elsevier.

    Google Scholar 

  • Varela, F., Thompson, E., & Rosch, E. (1992). The embodied mind: Cognitive science and human experience. Cambridge: MIT Press.

    Google Scholar 

  • Vattay, G., Kauffman, S., & Niiranen, S. (2014). Quantum biology on the edge of quantum chaos. PloS One, 3, e89017.

    Article  Google Scholar 

  • von Bertalanffy, L. (1928). Modern Theories of Development: An Introduction to Theoretical Biology. Harper: Oxford University Press, New York.

    Google Scholar 

  • von Foerster, H. (1974). Notes pour une épistémologie des objets vivants. In E. Morin & M. Piatelli-Palmarini (Eds.), L’unité de l’homme: Invariants Biologiques et Universaux Culturels (pp. 401–417). Paris: Le Seuil.

    Google Scholar 

  • von Foerster, H. (1977). Formalisation de certains aspects de l’équilibration de structures cognitives. In B. Inhelder & R. Garcia (Eds.), Epistémologie génétique et équilibration: hommage à Jean Piaget (pp. 76–89). Paris: Delachaux et Niestlé, Neuchatel.

    Google Scholar 

  • von Foerster, H. (1984). Observing systems. California: Intersystems Publications.

    Google Scholar 

  • von Foerster, H. (1995). Cybernetics of cybernetics. The control of control and the communication of communication. Minneapolis: Future Systems.

    Google Scholar 

  • von Glasersfeld, E. (2001). The radical constructivist view of science. Foundations of Science, 1-3, 31–43.

    Article  Google Scholar 

  • von Uexküll, J. (1909). Umwelt und innenwelt der tiere. Springer.

  • Weinbauer, M. G. (2004). Ecology of prokaryotic viruses. FEMS Microbiology Reviews, 28(2), 127–181.

    Article  CAS  PubMed  Google Scholar 

  • Wiener, N. (1948). Cybernetics or control and communication in the animal and the machine. Cambridge: MIT Press.

    Google Scholar 

  • Williams, G. R. (2010). The molecular biology of Gaia. Columbia University Press.

  • Zaretzky, A. N., & Letelier, J. C. (2002). Metabolic networks from (M,R)-systems and autopoiesis perspective. Journal of Biological Systems, 10(03), 265–280.

    Article  Google Scholar 

Download references

Acknowledgements

This manuscript is dedicated to the memory of Benjamin Rothman. The anonymous reviewer and the editors are acknowledged for their invaluable contributions to the final form of the manuscript. Wallonie-Bruxelles International (IN-WBI) founds SR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven S. dC Rubin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dC Rubin, S.S. From the Cellular Standpoint: is DNA Sequence Genetic ‘Information’?. Biosemiotics 10, 247–264 (2017). https://doi.org/10.1007/s12304-017-9303-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-017-9303-x

Keywords

Navigation