The Acoustic Habitat Hypothesis: An Ecoacoustics Perspective on Species Habitat Selection

Abstract

Sound is an inherent component of the environment that provides conditions and information necessary for many animal activities. Soniferous species require specific acoustic and physical conditions suitable for their signals to be transmitted, received, and effectively interpreted to successfully identify and utilize resources in their environment and interact with conspecifics and other heterospecific organisms. We propose the Acoustic Habitat Hypothesis to explain how the acoustic environment influences habitat selection of sound-dependent species. We postulate that sound-dependent species select and occupy habitats with unique acoustic characteristics that are essential to their functional needs and conducive to the threshold of sound frequency they produce and detect. These acoustic habitats are based on the composition of biophony, geophony, and technophony in the soundscape and on the biosemiotics mechanisms described in the eco-field hypothesis. The Acoustic Habitat Hypothesis initiates questions of habitat selection that go beyond the physical attributes of the environment by applying ecoacoustics theory. We outline the theoretical basis of the Acoustic Habitat Hypothesis and provide examples from the literature to support its assumptions. The concept of acoustic habitats has been documented in the literature for many years but here, we accurately and extensively define acoustic habitat and we put this concept into a unified theory. We also include perspectives on how the Acoustic Habitat Hypothesis can stimulate a paradigm shift in conservation strategies for threatened and endangered species.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Barber, J. R., Crooks, K. R., & Fristrup, K. M. (2010). The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology and Evolution, 25, 180–189.

    Article  PubMed  Google Scholar 

  2. Bayne, E. M., Habib, L., & Boutin, S. (2008). Impacts of chronic anthropogenic noise from energy-sector activity on abundance of songbirds in the boreal forest. Conservation Biology, 22, 1186–1193.

    Article  PubMed  Google Scholar 

  3. Bertucci, F., Parmentier, E., Lecellier, G., Hawkins, A. D., & Lecchini, D. (2016). Acoustic indices provide information on the status of coral reefs: An example from Moorea Island in the South Pacific. Scientific Reports, 6, 33326.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Betts, M. G., Hadley, A. S., Rodenhouse, N., & Nocera, J. J. (2008). Social information trumps vegetation structure in breeding-site selection by migrant songbird. Proceedings of the Royal Society B, 275, 2257–2263.

  5. Blumenrath, S. H., & Dabelsteen, T. (2004). Degradation of great tit (Parus major) song before and after foliation: Implications for vocal communication in a deciduous forest. Behaviour, 141, 935–958.

    Article  Google Scholar 

  6. Blumstein, D. T., Mennill, D. J., Clemins, P., Girod, L., Yao, K., Patricelli, G., Deppe, J. L., Krakauer, A. H., Clark, C., Cortopassi, K. A., & Hanser, S. F. (2011). Acoustic monitoring in terrestrial environments using microphone arrays: Applications, technological considerations and prospectus. Journal of Applied Ecology, 48, 758–767.

    Article  Google Scholar 

  7. Bobryk, C. W., Rega-Brodsky, C. C., Bardhan, S., Farina, A., He, H. S., & Jose, S. (2015). A rapid soundscape analysis to quantify conservation benefits of temperate agroforestry systems using low-cost technology. Agroforesty Systems. doi:10.1007/s10457-015-9879-6.

    Google Scholar 

  8. Bormpoudakis, D., Sueur, J., & Pantis, J. D. (2013). Spatial heterogeneity of ambient sound at the habitat type level: Ecological implications and applications. Landscape Ecology, 28, 495–506.

    Article  Google Scholar 

  9. Both, C., & Grant, T. (2012). Biological invasions and the acoustic niche: The effect of bullfrog calls on the acoustic signals of white-banded tree frog. Biology Letters, 8, 714–716.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boulinier, T., & Danchin, E. (1997). The use of conspecific reproductive success for breeding patch selection in terrestrial migratory species. Evolutionary Ecology, 11, 505–517.

    Article  Google Scholar 

  11. Brotons, L., & Herrando, S. (2001). Reduced bird occurrence in pine forest fragments associated with road proximity in a Mediterranean agricultural area. Landscape and Urban Planning, 57, 77–89.

    Article  Google Scholar 

  12. Brumm, H., & Naguib, M. (2009). Environmental acoustics and the evolution of bird song. Advances in the Study of Behavior, 40, 1–33.

    Article  Google Scholar 

  13. Brumm, H., & Slabbekoorn, H. (2005). Acoustic communication in noise. Advances in the Study of Behavior, 35, 151–209.

    Article  Google Scholar 

  14. Brumm, H., & Slater, P. J. B. (2006). Ambient noise, motor fatigue, and serial redundancy in chaffinch song. Behavioral Ecology and Sociobiology, 60, 475–481.

    Article  Google Scholar 

  15. Calford, M. B. (1988). Constraints on the coding of sound frequency imposed by the avian interaural canal. Journal of Comparative Physiology A, 162, 491–502.

    Article  Google Scholar 

  16. Campo, J. L., Gil, M. G., & Dávila, S. G. (2005). Effects of noise and music stimuli on stress and fear levels of laying hens of several breeds. Applied Animal Behaviour Science, 91, 75–84.

    Article  Google Scholar 

  17. Canaday, C., & Rivadeneyra, J. (2001). Initial effects of a petroleum operation on Amazonian birds: Terrestrial insectivores retreat. Biodiversity and Conservation, 10, 567–595.

    Article  Google Scholar 

  18. Chavarría, M. R., Castro, J., & Camacho, A. (2015). The relationship between acoustic habitat, hearing and tonal vocalizations in the Antillean manatee (Trichechus manatus manatus, Linnaeus, 1758). Biology Open, 4, 1237–1242.

    Article  Google Scholar 

  19. Crino, O. L., Johnson, E. E., Blickley, J. L., Patricelli, G. L., & Breuner, C. W. (2013). Effects of experimentally elevated traffic noise on nestling white-crowned sparrow stress physiology, immune function and life history. Journal of Experimental Biology, 216, 2055–2062.

    Article  PubMed  Google Scholar 

  20. Danchin, É., Giraldeau, L.-A., Valone, T. J., & Wagner, R. H. (2004). Public information: From nosy neighbors to cultural evolution. Science, 305, 487–491.

    CAS  Article  PubMed  Google Scholar 

  21. Derryberry, E. P. (2009). Ecology shapes birdsong evolution: Variation in morphology and habitat explains variation in white-crowed sparrow song. American Naturalist, 174, 24–33.

    Article  PubMed  Google Scholar 

  22. Duarte, M. H. J., Sousa-Lima, R. S., Young, R. J., Farina, A., Vasconcelos, M., Rodrigues, M., & Pieretti, N. (2015). The impact of noise from open-cast mining on Atlantic forest biophony. Biological Conservation, 191, 623–631.

    Article  Google Scholar 

  23. Farina, A. (2012). A biosemiotics perspective of the resource criterion: Toward a general theory of resources. Biosemiotics, 5, 17–32.

    Article  Google Scholar 

  24. Farina, A. (2014). Soundscape ecology: Principles, patterns, methods and applications. New York: Springer.

    Book  Google Scholar 

  25. Farina, A., & Belgrano, A. (2006). The eco-field hypothesis: Toward a cognitive landscape. Landscape Ecology, 21, 5–17.

    Article  Google Scholar 

  26. Farina, A., & Gage, S. H. (Eds.). (2017). Ecoacoustics: The ecological role of sounds. Chichester: Wiley & Sons.

    Google Scholar 

  27. Farina, A., & James, P. (2016). Acoustic community structure and dynamics: A fundamental component of ecoacoustics. Biosystems, 147, 11–20.

    Article  PubMed  Google Scholar 

  28. Farina, A., & Salutari, P. (2016). Applying the Ecoacoustic event detection and identification (EEDI) model to the analysis of acoustic complexity. Journal of Mediterranean Ecology, 14, 13–42.

    Google Scholar 

  29. Farina, A., James, P., Bobryk, C., Pieretti, N., Lattanzi, E., & McWilliam, J. (2014). Low cost (audio) recording (LCR) for advancing soundscape ecology towards the conservation of sonic complexity and biodiversity in natural and urban landscapes. Urban Ecosystems, 17, 923–944.

    Article  Google Scholar 

  30. Farina, A., Pieretti, N., Tognari, E., & Lombardi, A. (2016). The application of the Acoustic complexity indices (ACI) to Ecoacoustic event detection and identification (EEDI) modeling. Biosemiotics, 9, 227–246.

    Article  Google Scholar 

  31. Fay, R. R. (1988a). Hearing in vertebrates: A psychophysics databook. Chicago: Hill-Fay Assoc.

    Google Scholar 

  32. Fay, R. R. (1988b). Comparative psychoacoustics. Hearing Research, 34, 295–305.

    CAS  Article  PubMed  Google Scholar 

  33. Fernandez-Juricic, E. (2001). Avian spatial segregation at edges and interiors of urban parks in Madrid, Spain. Biodiversity and Conservation, 10, 1303–1316.

    Article  Google Scholar 

  34. Fletcher Jr., R. J. (2007). Species interactions and population density mediate the use of social cues for habitat selection. Journal of Animal Ecology, 76, 598–606.

    Article  PubMed  Google Scholar 

  35. Forman, R. T. T., & Deblinger, R. D. (2000). The ecological road-effect zone of a Massachusetts (U.S.A.) suburban highway. Conservation Biology, 14, 36–46.

    Article  Google Scholar 

  36. Forman, R. T. T., Reineking, B., & Hersperger, A. M. (2002). Road traffic and nearby grassland bird patterns in a suburbanizing landscape. Environmental Management, 29, 782–800.

    Article  PubMed  Google Scholar 

  37. Francis, C. D., Ortega, C. P., & Cruz, A. (2009). Noise pollution changes avian communities and species interactions. Current Biology, 19, 1415–1419.

    CAS  Article  PubMed  Google Scholar 

  38. Francis, C. D., Ortega, C. P., Kennedy, I., & Nylander, P. J. (2012). Are nest predators absent from noisy areas or unable to locate nests? Ornithological Monographs, 74, 99–108.

    Google Scholar 

  39. Fuller, S., Axel, A. C., Tucker, D., & Gage, S. H. (2015). Connecting soundscape to landscape: Which acoustic index best describes landscape configuration? Ecological Indicators, 58, 207–215.

    Article  Google Scholar 

  40. Gage, S. H., & Axel, A. C. (2014). Visualization of temporal change in soundscape power of a Michigan lake habitat over a 4-year period. Ecological Informatics, 21, 100–109.

    Article  Google Scholar 

  41. Gage, S., Ummadi, P., Shortridge, A., Qi, J., & Jella, P. (2004). Using GIS to develop a network of acoustic environmental sensors. In ESRI International Conference, San Diego, CA (pp. 9–13).

    Google Scholar 

  42. Gasc, A., Pavoine, S., Lellouch, L., Grandcolas, P., & Sueur, J. (2015). Acoustic indices for biodiversity assessments: Analyses of bias based on simulated bird assemblages and recommendations for field surveys. Biological Conservation, 191, 306–312.

    Article  Google Scholar 

  43. Gerhardt, H. C., & Huber, F. (2002). Acoustic communication in insects and anurans. Chicago: University of Chicago Press.

    Google Scholar 

  44. Goutte, S., Dubois, A., & Legendre, F. (2013). The importance of ambient sound level to characterize anuran habitat. PloS One, 8, e78020.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Hahn, B. A., & Silverman, E. D. (2006). Social cues facilitate habitat selection: American redstarts establish breeding territories in response to song. Biology Letters, 2, 337–340.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hahn, B. A., & Silverman, E. D. (2007). Managing breeding forest songbirds with conspecific song playbacks. Animal Conservation, 10, 436–441.

    Article  Google Scholar 

  47. Halfwerk, W., & Slabbekoorn, H. (2009). A behavioural mechanism explaining noise-dependent frequency use in urban birdsong. Animal Behaviour, 78, 1301–1307.

    Article  Google Scholar 

  48. Hansen, P. (1979). Vocal learning: Its role in adapting sound structures to long-distance propagation, and a hypothesis on its evolution. Animal Behaviour, 27, 1270–1271.

    Article  Google Scholar 

  49. Harcourt, A. H. (1991). Help, cooperation, and trust in animals. In R. A. Hinde & J. Groebel (Eds.), Cooperation and prosocial behavior (pp. 15–26). Cambridge: Cambridge University Press.

    Google Scholar 

  50. Hatch, L. T., Wahle, C. M., Gedamke, J., Harrison, J., Laws, B., Moore, S. E., Stadler, J. H., & Van Parijs, S. M. (2016). Can you hear me here? Managing acoustic habitat in US waters. Endangered Species Research, 30, 171–186.

    Article  Google Scholar 

  51. Hoskin, C. J., James, S., & Grigg, G. C. (2009). Ecology and taxonomy-driven deviations in the frog call-body size relationship across diverse Australian frog fauna. Journal of Zoology, 278, 36–41.

    Article  Google Scholar 

  52. Krause, B. L. (1993). The niche hypothesis. Soundscape Newsletter, 6, 6–10.

    Google Scholar 

  53. Krause, B. L. (2002). The loss of natural soundscape. Earth Island Journal, 17, 27–29.

    Google Scholar 

  54. Krause, B. L. (2012). The great animal orchestra: Finding the origins of music in the world’s wild places. London: Profile Books Limited.

    Google Scholar 

  55. Laiolo, P., & Tella, J. L. (2007). Erosion of animal cultures in fragmented landscapes. Frontiers in Ecology and the Environment, 5, 68–72.

    Article  Google Scholar 

  56. Lanyon, W. E., & Tavolga, W. N. (1960). Animal sounds and communication. Washington: American Institute of Biological Science.

    Google Scholar 

  57. Lillis, A., Eggleston, D. B., & Bohlenstiehl, D. R. (2013). Oyster larvae settle in response to habitat-associated underwater sounds. PloS One, 8, e79337. doi:10.1371/journal.pone.0079337.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Manser, M. B., Bell, M. B., & Fletcher, L. B. (2001). The information that receivers extract from alarm calls in suricates. Proceedings of the Royal Society B, 268, 2485–2491.

  59. Martin, W. F. (1972). Evolution of vocalization in the genus Bufo. In W. F. Blair (Ed.), Evolution in the genus Bufo (pp. 279–309). Austin: University of Texas Press.

    Google Scholar 

  60. Maxwell, M. H. (1993). Avian blood leucocyte responses to stress. World’s Poultry Science Journal, 49, 34–43.

    Article  Google Scholar 

  61. McClure, C. J. W., Ware, H. E., Carlisle, J., Kaltenecker, G., & Barber, J. R. (2013). An experimental investigation into the effects of traffic noise on distributions of birds: Avoiding the phantom road. Proceedings of the Royal Society B, 280, 20132290.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Merchant, N. D., Fristrup, K. M., Johnson, M. P., Tyack, P. L., Witt, M. J., Blondel, P., & Parks, S. E. (2015). Measuring acoustic habitats. Methods in Ecology and Evolution, 6, 257–265.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mockford, E. J., & Marshall, R. C. (2009). Effects of urban noise on song and response behavior in great tits. Proceedings of the Royal Society B, 276, 2979–2985.

  64. Monaco, C., Ibáñez, J. M., Carrión, F., & Tringali, L. M. (2016). Cetacean behavioral responses to noise exposure generated by seismic surveys: How to mitigate better? Annals of Geophysics, 59, S0436.

    Google Scholar 

  65. Mönkkönen, M., Helle, P., & Soppela, K. (1990). Numerical and behavioral responses of migrant passerines to experimental manipulation of resident tits (Parus spp): Heterospecific attraction in northern breeding communities. Oecologia, 85, 218–225.

    Article  PubMed  Google Scholar 

  66. Morton, E. S. (1975). Ecological sources of selection on avian sounds. American Naturalist, 209, 17–34.

    Article  Google Scholar 

  67. Mullet, T. C., Gage, S. H., Morton, J. M., & Huettmann, F. (2016). Spatial and temporal variation of a winter soundscape in south-central Alaska. Landscape Ecology, 31, 1117–1137.

    Article  Google Scholar 

  68. Mullet, T. C., Morton, J. M., Gage, S. H., & Huettmann, F. (2017). Acoustic footprint of snowmobile noise and natural quiet refugia in an Alaskan wilderness. Natural Areas Journal, in press.

  69. Nevo, E., & Schneider, H. (1976). Mating call pattern of green toads in Israel and its ecological correlates. Journal of Zoology, 178, 133–145.

    Article  Google Scholar 

  70. Ortega, C. P. (2012). Effects of noise pollution on birds: A brief review of our knowledge. Ornithological Monographs, 74, 6–22.

    Article  Google Scholar 

  71. Ortega, C. P., & Francis, C. D. (2012). Effects of gas-well-compressor noise on ability to detect birds during surveys in northwest New Mexico. Ornithological Monographs, 74, 78–90.

    Article  Google Scholar 

  72. Peris, S. J., & Pescador, M. (2004). Effects of traffic noise on passerine populations in the Mediterranean wood pastures. Journal of the Acoustic Society of America, 65, 357–366.

    Google Scholar 

  73. Pieretti, N., Farina, A., & Morri, D. (2011). A new methodology to infer the singing activity of an avian community: The Acoustic complexity index (ACI). Ecological Indicators, 11, 868–873.

    Article  Google Scholar 

  74. Pieretti, N., Duarte, M. H. L., Sousa-Lima, R. S., Rodrigues, M., Young, R. J., & Farina, A. (2015). Determining temporal sampling schemes for passive acoustic studies in different tropical ecosystems. Tropical Conservation Science, 88, 215–234.

    Article  Google Scholar 

  75. Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L., Napoletano, B. M., Gage, S. H., & Pierettie, N. (2011). Soundscape ecology: The science of sound in the landscape. Bioscience, 3, 203–216.

    Article  Google Scholar 

  76. Preininger, D., Böckle, M., & Hödl, W. (2007). Comparison of anuran acoustic communities of two habitat typs in Danum Valley conservation area, Sabah, Malaysia. Salamdra, 43, 129–138.

    Google Scholar 

  77. Qi, J., Gage, S. H., Joo, W., Napoletano, B., & Biswas, S. (2008). Soundscape characteristics of an environment: A new ecological indicator of ecosystem health. In W. Ji (Ed.), Wetland and water resource modeling and assessment (pp. 201–211). New York: CRC Press.

    Google Scholar 

  78. Reijnen, R., Foppen, R., Braak, C. T., & Thissen, J. (1995). Impact of road traffic on breeding bird populations. In J. Davenport & J. L. Davenport (Eds.), The ecology of transportation: Managing mobility for the environment (pp. 255–274). Heidelberg: Springer-Verlag.

    Google Scholar 

  79. Rheindt, F. E. (2003). The impact of roads on birds: Does song frequency play a role in determining susceptibility to noise pollution? Journal of Ornithology, 144, 295–306.

    Article  Google Scholar 

  80. Richardson, W. J., Miller, G. W., & Greene, C. R. (1999). Displacement of migrating bowhead whales by sounds from seismic surveys in shallow waters of the Beaufort Sea. Journal of Acoustic Society of America, 106, 2281.

    Article  Google Scholar 

  81. Ritts, M., Gage, S. H., Picard, C. R., Dundas, E., & Dundas, S. (2016). Collaborative research praxi to establish baseline ecoacoustics conditions in Gitga’at territory. Global Ecology and Conservation, 7, 25–38.

    Article  Google Scholar 

  82. Rogers, P. H., Popper, A. N., Hastings, M. C., & Saidel, W. M. (1988). Processing of acoustic signals in the auditory system of bony fish. Journal of the Acoustical Society of America, 83, 338–349.

    CAS  Article  PubMed  Google Scholar 

  83. Ryan, M. J., & Brenowitz, E. A. (1985). The role of body size, phylogeny, and ambient noise in the evolution of bird song. American Naturalist, 126, 87–100.

    Article  Google Scholar 

  84. Samarra, F. I. P., Klappert, K., Brumm, H., & Miller, P. J. O. (2009). Background noise constrains communication: Acoustic masking of courtship song in the fruit fly Drosophila montana. Behaviour, 146, 1635–1648.

    Article  Google Scholar 

  85. Schafer, R. M. (1985). Acoustic space. In D. Seamon & R. Mugerauer (Eds.), Dwelling, place and environment: Towards a phenomenology of person and world (pp. 87–98). Netherlands: Springer.

    Google Scholar 

  86. Simpson, S. D., Jeffs, A., Montgomery, J. C., McCauley, R. D., & Meekan, M. G. (2008). Nocturnal relocation of adult and juvenile coral reef fishes in response to reef noise. Coral Reefs, 27, 97–104.

    Article  Google Scholar 

  87. Simpson, S. D., Radford, A. N., Tickle, E. J., Meekan, M. G., & Jeffs, A. G. (2012). Adaptive avoidance of reef noise. PloS One, 6, e16625. doi:10.1371/journal.pone.0016625.

    Article  Google Scholar 

  88. Slabbekoorn, H., & Bouton, N. (2008). Soundscape orientation: A new field in need of sound investigation. Animal Behaviour, 76, e5–e8.

    Article  Google Scholar 

  89. Slabbekoorn, H., & Peet, M. (2003). Birds sing at a higher pitch in urban noise. Nature, 424, 267.

    CAS  Article  PubMed  Google Scholar 

  90. Slabbekoorn, H., & Ripmeester, E. A. (2008). Birdsong and anthropogenic noise: Implications and applications for conservation. Molecular Ecology, 17, 72–83.

    Article  PubMed  Google Scholar 

  91. Spreng, M. (2000). Possible health effects of noise induced cortisol increase. Noise and Health, 2, 59–63.

    PubMed  Google Scholar 

  92. Stone, E. (2000). Separating noise from the noise: A finding in support of the niche hypothesis, that birds are influenced by human-induced noise in natural habitats. Anthrozoös, 13, 225–271.

    Article  Google Scholar 

  93. Sueur, J., & Farina, A. (2015). Ecoacoustics: The ecological investigation and interpretation of environmental sound. Biosemiotics, 8, 493–502.

    Article  Google Scholar 

  94. Tolimieri, N., Jeffs, A., & Montgomery, J. C. (2000). Ambient sound as a cue for navigation by the pelagic larvae of reef fishes. Marine Ecology Progress Series, 207, 219–224.

    Article  Google Scholar 

  95. Valone, T. J., & Templeton, J. J. (2002). Public information for the assessment of quality: A widespread social phenomenon. Philosophical Transactions of the Royal Society B, 357, 1549–1557.

    Article  Google Scholar 

  96. Vandermeer, J. H. (1972). Niche theory. Annual Review of Ecology and Systematics, 3, 107–1032.

    Article  Google Scholar 

  97. Vargas-Salinas, F., & Amezquita, A. (2013). Stream noise, hybridization, and uncoupled evolution of call traits in two lineages of poison frogs: Oophaga histrionica And Oophaga lehmanni. PloS One, 8, e77545.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. Vargas-Salinas, F., Dorado-Correa, A., & Amézquita, A. (2014). Microclimate and stream noise predict geographic divergence in the auditory signal of a threatened poison frog. Biotropica, 46, 748–755.

    Article  Google Scholar 

  99. Ward, M. P., & Schlossberg, S. (2004). Conspecific attraction and the conversation of territorial songbirds. Conservation Biology, 18, 519–525.

    Article  Google Scholar 

  100. Ward, P., & Zahavi, A. (1973). The importance of certain assemblages of birds as “information-centres” for food finding. Ibis, 115, 517–534.

    Article  Google Scholar 

  101. Wood, W. E., & Yezerinac, S. M. (2006). Song sparrow (Melospizqa melodia) song varies with urban noise. The Auk, 123, 650–659.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Bernie Krause, Jérôme Sueur, and Dimitrios Bormpoudakis for their support and discussions on the topic of acoustic habitats. We appreciate the support from the International Society of Ecoacoustics and their encouragement to publish our hypothesis. We also appreciate the efforts of Timo Maran and an anonymous reviewer whose comments and suggestions helped improve this work. Finally, the findings and conclusions in this article are those of the authors and do not necessarily represent the views of any government agencies.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Mullet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mullet, T.C., Farina, A. & Gage, S.H. The Acoustic Habitat Hypothesis: An Ecoacoustics Perspective on Species Habitat Selection. Biosemiotics 10, 319–336 (2017). https://doi.org/10.1007/s12304-017-9288-5

Download citation

Keywords

  • Acoustic habitat
  • Acoustic habitat hypothesis
  • Ecoacoustics
  • Eco-field
  • Habitat selection
  • Soundscape