, Volume 10, Issue 3, pp 319–336 | Cite as

The Acoustic Habitat Hypothesis: An Ecoacoustics Perspective on Species Habitat Selection

  • Timothy C. MulletEmail author
  • Almo Farina
  • Stuart H. Gage


Sound is an inherent component of the environment that provides conditions and information necessary for many animal activities. Soniferous species require specific acoustic and physical conditions suitable for their signals to be transmitted, received, and effectively interpreted to successfully identify and utilize resources in their environment and interact with conspecifics and other heterospecific organisms. We propose the Acoustic Habitat Hypothesis to explain how the acoustic environment influences habitat selection of sound-dependent species. We postulate that sound-dependent species select and occupy habitats with unique acoustic characteristics that are essential to their functional needs and conducive to the threshold of sound frequency they produce and detect. These acoustic habitats are based on the composition of biophony, geophony, and technophony in the soundscape and on the biosemiotics mechanisms described in the eco-field hypothesis. The Acoustic Habitat Hypothesis initiates questions of habitat selection that go beyond the physical attributes of the environment by applying ecoacoustics theory. We outline the theoretical basis of the Acoustic Habitat Hypothesis and provide examples from the literature to support its assumptions. The concept of acoustic habitats has been documented in the literature for many years but here, we accurately and extensively define acoustic habitat and we put this concept into a unified theory. We also include perspectives on how the Acoustic Habitat Hypothesis can stimulate a paradigm shift in conservation strategies for threatened and endangered species.


Acoustic habitat Acoustic habitat hypothesis Ecoacoustics Eco-field Habitat selection Soundscape 



We thank Bernie Krause, Jérôme Sueur, and Dimitrios Bormpoudakis for their support and discussions on the topic of acoustic habitats. We appreciate the support from the International Society of Ecoacoustics and their encouragement to publish our hypothesis. We also appreciate the efforts of Timo Maran and an anonymous reviewer whose comments and suggestions helped improve this work. Finally, the findings and conclusions in this article are those of the authors and do not necessarily represent the views of any government agencies.


  1. Barber, J. R., Crooks, K. R., & Fristrup, K. M. (2010). The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology and Evolution, 25, 180–189.CrossRefPubMedGoogle Scholar
  2. Bayne, E. M., Habib, L., & Boutin, S. (2008). Impacts of chronic anthropogenic noise from energy-sector activity on abundance of songbirds in the boreal forest. Conservation Biology, 22, 1186–1193.CrossRefPubMedGoogle Scholar
  3. Bertucci, F., Parmentier, E., Lecellier, G., Hawkins, A. D., & Lecchini, D. (2016). Acoustic indices provide information on the status of coral reefs: An example from Moorea Island in the South Pacific. Scientific Reports, 6, 33326.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Betts, M. G., Hadley, A. S., Rodenhouse, N., & Nocera, J. J. (2008). Social information trumps vegetation structure in breeding-site selection by migrant songbird. Proceedings of the Royal Society B, 275, 2257–2263.Google Scholar
  5. Blumenrath, S. H., & Dabelsteen, T. (2004). Degradation of great tit (Parus major) song before and after foliation: Implications for vocal communication in a deciduous forest. Behaviour, 141, 935–958.CrossRefGoogle Scholar
  6. Blumstein, D. T., Mennill, D. J., Clemins, P., Girod, L., Yao, K., Patricelli, G., Deppe, J. L., Krakauer, A. H., Clark, C., Cortopassi, K. A., & Hanser, S. F. (2011). Acoustic monitoring in terrestrial environments using microphone arrays: Applications, technological considerations and prospectus. Journal of Applied Ecology, 48, 758–767.CrossRefGoogle Scholar
  7. Bobryk, C. W., Rega-Brodsky, C. C., Bardhan, S., Farina, A., He, H. S., & Jose, S. (2015). A rapid soundscape analysis to quantify conservation benefits of temperate agroforestry systems using low-cost technology. Agroforesty Systems. doi: 10.1007/s10457-015-9879-6.Google Scholar
  8. Bormpoudakis, D., Sueur, J., & Pantis, J. D. (2013). Spatial heterogeneity of ambient sound at the habitat type level: Ecological implications and applications. Landscape Ecology, 28, 495–506.CrossRefGoogle Scholar
  9. Both, C., & Grant, T. (2012). Biological invasions and the acoustic niche: The effect of bullfrog calls on the acoustic signals of white-banded tree frog. Biology Letters, 8, 714–716.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Boulinier, T., & Danchin, E. (1997). The use of conspecific reproductive success for breeding patch selection in terrestrial migratory species. Evolutionary Ecology, 11, 505–517.CrossRefGoogle Scholar
  11. Brotons, L., & Herrando, S. (2001). Reduced bird occurrence in pine forest fragments associated with road proximity in a Mediterranean agricultural area. Landscape and Urban Planning, 57, 77–89.CrossRefGoogle Scholar
  12. Brumm, H., & Naguib, M. (2009). Environmental acoustics and the evolution of bird song. Advances in the Study of Behavior, 40, 1–33.CrossRefGoogle Scholar
  13. Brumm, H., & Slabbekoorn, H. (2005). Acoustic communication in noise. Advances in the Study of Behavior, 35, 151–209.CrossRefGoogle Scholar
  14. Brumm, H., & Slater, P. J. B. (2006). Ambient noise, motor fatigue, and serial redundancy in chaffinch song. Behavioral Ecology and Sociobiology, 60, 475–481.CrossRefGoogle Scholar
  15. Calford, M. B. (1988). Constraints on the coding of sound frequency imposed by the avian interaural canal. Journal of Comparative Physiology A, 162, 491–502.CrossRefGoogle Scholar
  16. Campo, J. L., Gil, M. G., & Dávila, S. G. (2005). Effects of noise and music stimuli on stress and fear levels of laying hens of several breeds. Applied Animal Behaviour Science, 91, 75–84.CrossRefGoogle Scholar
  17. Canaday, C., & Rivadeneyra, J. (2001). Initial effects of a petroleum operation on Amazonian birds: Terrestrial insectivores retreat. Biodiversity and Conservation, 10, 567–595.CrossRefGoogle Scholar
  18. Chavarría, M. R., Castro, J., & Camacho, A. (2015). The relationship between acoustic habitat, hearing and tonal vocalizations in the Antillean manatee (Trichechus manatus manatus, Linnaeus, 1758). Biology Open, 4, 1237–1242.CrossRefGoogle Scholar
  19. Crino, O. L., Johnson, E. E., Blickley, J. L., Patricelli, G. L., & Breuner, C. W. (2013). Effects of experimentally elevated traffic noise on nestling white-crowned sparrow stress physiology, immune function and life history. Journal of Experimental Biology, 216, 2055–2062.CrossRefPubMedGoogle Scholar
  20. Danchin, É., Giraldeau, L.-A., Valone, T. J., & Wagner, R. H. (2004). Public information: From nosy neighbors to cultural evolution. Science, 305, 487–491.CrossRefPubMedGoogle Scholar
  21. Derryberry, E. P. (2009). Ecology shapes birdsong evolution: Variation in morphology and habitat explains variation in white-crowed sparrow song. American Naturalist, 174, 24–33.CrossRefPubMedGoogle Scholar
  22. Duarte, M. H. J., Sousa-Lima, R. S., Young, R. J., Farina, A., Vasconcelos, M., Rodrigues, M., & Pieretti, N. (2015). The impact of noise from open-cast mining on Atlantic forest biophony. Biological Conservation, 191, 623–631.CrossRefGoogle Scholar
  23. Farina, A. (2012). A biosemiotics perspective of the resource criterion: Toward a general theory of resources. Biosemiotics, 5, 17–32.CrossRefGoogle Scholar
  24. Farina, A. (2014). Soundscape ecology: Principles, patterns, methods and applications. New York: Springer.CrossRefGoogle Scholar
  25. Farina, A., & Belgrano, A. (2006). The eco-field hypothesis: Toward a cognitive landscape. Landscape Ecology, 21, 5–17.CrossRefGoogle Scholar
  26. Farina, A., & Gage, S. H. (Eds.). (2017). Ecoacoustics: The ecological role of sounds. Chichester: Wiley & Sons.Google Scholar
  27. Farina, A., & James, P. (2016). Acoustic community structure and dynamics: A fundamental component of ecoacoustics. Biosystems, 147, 11–20.CrossRefPubMedGoogle Scholar
  28. Farina, A., & Salutari, P. (2016). Applying the Ecoacoustic event detection and identification (EEDI) model to the analysis of acoustic complexity. Journal of Mediterranean Ecology, 14, 13–42.Google Scholar
  29. Farina, A., James, P., Bobryk, C., Pieretti, N., Lattanzi, E., & McWilliam, J. (2014). Low cost (audio) recording (LCR) for advancing soundscape ecology towards the conservation of sonic complexity and biodiversity in natural and urban landscapes. Urban Ecosystems, 17, 923–944.CrossRefGoogle Scholar
  30. Farina, A., Pieretti, N., Tognari, E., & Lombardi, A. (2016). The application of the Acoustic complexity indices (ACI) to Ecoacoustic event detection and identification (EEDI) modeling. Biosemiotics, 9, 227–246.CrossRefGoogle Scholar
  31. Fay, R. R. (1988a). Hearing in vertebrates: A psychophysics databook. Chicago: Hill-Fay Assoc.Google Scholar
  32. Fay, R. R. (1988b). Comparative psychoacoustics. Hearing Research, 34, 295–305.CrossRefPubMedGoogle Scholar
  33. Fernandez-Juricic, E. (2001). Avian spatial segregation at edges and interiors of urban parks in Madrid, Spain. Biodiversity and Conservation, 10, 1303–1316.CrossRefGoogle Scholar
  34. Fletcher Jr., R. J. (2007). Species interactions and population density mediate the use of social cues for habitat selection. Journal of Animal Ecology, 76, 598–606.CrossRefPubMedGoogle Scholar
  35. Forman, R. T. T., & Deblinger, R. D. (2000). The ecological road-effect zone of a Massachusetts (U.S.A.) suburban highway. Conservation Biology, 14, 36–46.CrossRefGoogle Scholar
  36. Forman, R. T. T., Reineking, B., & Hersperger, A. M. (2002). Road traffic and nearby grassland bird patterns in a suburbanizing landscape. Environmental Management, 29, 782–800.CrossRefPubMedGoogle Scholar
  37. Francis, C. D., Ortega, C. P., & Cruz, A. (2009). Noise pollution changes avian communities and species interactions. Current Biology, 19, 1415–1419.CrossRefPubMedGoogle Scholar
  38. Francis, C. D., Ortega, C. P., Kennedy, I., & Nylander, P. J. (2012). Are nest predators absent from noisy areas or unable to locate nests? Ornithological Monographs, 74, 99–108.Google Scholar
  39. Fuller, S., Axel, A. C., Tucker, D., & Gage, S. H. (2015). Connecting soundscape to landscape: Which acoustic index best describes landscape configuration? Ecological Indicators, 58, 207–215.CrossRefGoogle Scholar
  40. Gage, S. H., & Axel, A. C. (2014). Visualization of temporal change in soundscape power of a Michigan lake habitat over a 4-year period. Ecological Informatics, 21, 100–109.CrossRefGoogle Scholar
  41. Gage, S., Ummadi, P., Shortridge, A., Qi, J., & Jella, P. (2004). Using GIS to develop a network of acoustic environmental sensors. In ESRI International Conference, San Diego, CA (pp. 9–13).Google Scholar
  42. Gasc, A., Pavoine, S., Lellouch, L., Grandcolas, P., & Sueur, J. (2015). Acoustic indices for biodiversity assessments: Analyses of bias based on simulated bird assemblages and recommendations for field surveys. Biological Conservation, 191, 306–312.CrossRefGoogle Scholar
  43. Gerhardt, H. C., & Huber, F. (2002). Acoustic communication in insects and anurans. Chicago: University of Chicago Press.Google Scholar
  44. Goutte, S., Dubois, A., & Legendre, F. (2013). The importance of ambient sound level to characterize anuran habitat. PloS One, 8, e78020.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hahn, B. A., & Silverman, E. D. (2006). Social cues facilitate habitat selection: American redstarts establish breeding territories in response to song. Biology Letters, 2, 337–340.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hahn, B. A., & Silverman, E. D. (2007). Managing breeding forest songbirds with conspecific song playbacks. Animal Conservation, 10, 436–441.CrossRefGoogle Scholar
  47. Halfwerk, W., & Slabbekoorn, H. (2009). A behavioural mechanism explaining noise-dependent frequency use in urban birdsong. Animal Behaviour, 78, 1301–1307.CrossRefGoogle Scholar
  48. Hansen, P. (1979). Vocal learning: Its role in adapting sound structures to long-distance propagation, and a hypothesis on its evolution. Animal Behaviour, 27, 1270–1271.CrossRefGoogle Scholar
  49. Harcourt, A. H. (1991). Help, cooperation, and trust in animals. In R. A. Hinde & J. Groebel (Eds.), Cooperation and prosocial behavior (pp. 15–26). Cambridge: Cambridge University Press.Google Scholar
  50. Hatch, L. T., Wahle, C. M., Gedamke, J., Harrison, J., Laws, B., Moore, S. E., Stadler, J. H., & Van Parijs, S. M. (2016). Can you hear me here? Managing acoustic habitat in US waters. Endangered Species Research, 30, 171–186.CrossRefGoogle Scholar
  51. Hoskin, C. J., James, S., & Grigg, G. C. (2009). Ecology and taxonomy-driven deviations in the frog call-body size relationship across diverse Australian frog fauna. Journal of Zoology, 278, 36–41.CrossRefGoogle Scholar
  52. Krause, B. L. (1993). The niche hypothesis. Soundscape Newsletter, 6, 6–10.Google Scholar
  53. Krause, B. L. (2002). The loss of natural soundscape. Earth Island Journal, 17, 27–29.Google Scholar
  54. Krause, B. L. (2012). The great animal orchestra: Finding the origins of music in the world’s wild places. London: Profile Books Limited.Google Scholar
  55. Laiolo, P., & Tella, J. L. (2007). Erosion of animal cultures in fragmented landscapes. Frontiers in Ecology and the Environment, 5, 68–72.CrossRefGoogle Scholar
  56. Lanyon, W. E., & Tavolga, W. N. (1960). Animal sounds and communication. Washington: American Institute of Biological Science.Google Scholar
  57. Lillis, A., Eggleston, D. B., & Bohlenstiehl, D. R. (2013). Oyster larvae settle in response to habitat-associated underwater sounds. PloS One, 8, e79337. doi: 10.1371/journal.pone.0079337.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Manser, M. B., Bell, M. B., & Fletcher, L. B. (2001). The information that receivers extract from alarm calls in suricates. Proceedings of the Royal Society B, 268, 2485–2491.Google Scholar
  59. Martin, W. F. (1972). Evolution of vocalization in the genus Bufo. In W. F. Blair (Ed.), Evolution in the genus Bufo (pp. 279–309). Austin: University of Texas Press.Google Scholar
  60. Maxwell, M. H. (1993). Avian blood leucocyte responses to stress. World’s Poultry Science Journal, 49, 34–43.CrossRefGoogle Scholar
  61. McClure, C. J. W., Ware, H. E., Carlisle, J., Kaltenecker, G., & Barber, J. R. (2013). An experimental investigation into the effects of traffic noise on distributions of birds: Avoiding the phantom road. Proceedings of the Royal Society B, 280, 20132290.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Merchant, N. D., Fristrup, K. M., Johnson, M. P., Tyack, P. L., Witt, M. J., Blondel, P., & Parks, S. E. (2015). Measuring acoustic habitats. Methods in Ecology and Evolution, 6, 257–265.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Mockford, E. J., & Marshall, R. C. (2009). Effects of urban noise on song and response behavior in great tits. Proceedings of the Royal Society B, 276, 2979–2985.Google Scholar
  64. Monaco, C., Ibáñez, J. M., Carrión, F., & Tringali, L. M. (2016). Cetacean behavioral responses to noise exposure generated by seismic surveys: How to mitigate better? Annals of Geophysics, 59, S0436.Google Scholar
  65. Mönkkönen, M., Helle, P., & Soppela, K. (1990). Numerical and behavioral responses of migrant passerines to experimental manipulation of resident tits (Parus spp): Heterospecific attraction in northern breeding communities. Oecologia, 85, 218–225.CrossRefPubMedGoogle Scholar
  66. Morton, E. S. (1975). Ecological sources of selection on avian sounds. American Naturalist, 209, 17–34.CrossRefGoogle Scholar
  67. Mullet, T. C., Gage, S. H., Morton, J. M., & Huettmann, F. (2016). Spatial and temporal variation of a winter soundscape in south-central Alaska. Landscape Ecology, 31, 1117–1137.CrossRefGoogle Scholar
  68. Mullet, T. C., Morton, J. M., Gage, S. H., & Huettmann, F. (2017). Acoustic footprint of snowmobile noise and natural quiet refugia in an Alaskan wilderness. Natural Areas Journal, in press.Google Scholar
  69. Nevo, E., & Schneider, H. (1976). Mating call pattern of green toads in Israel and its ecological correlates. Journal of Zoology, 178, 133–145.CrossRefGoogle Scholar
  70. Ortega, C. P. (2012). Effects of noise pollution on birds: A brief review of our knowledge. Ornithological Monographs, 74, 6–22.CrossRefGoogle Scholar
  71. Ortega, C. P., & Francis, C. D. (2012). Effects of gas-well-compressor noise on ability to detect birds during surveys in northwest New Mexico. Ornithological Monographs, 74, 78–90.CrossRefGoogle Scholar
  72. Peris, S. J., & Pescador, M. (2004). Effects of traffic noise on passerine populations in the Mediterranean wood pastures. Journal of the Acoustic Society of America, 65, 357–366.Google Scholar
  73. Pieretti, N., Farina, A., & Morri, D. (2011). A new methodology to infer the singing activity of an avian community: The Acoustic complexity index (ACI). Ecological Indicators, 11, 868–873.CrossRefGoogle Scholar
  74. Pieretti, N., Duarte, M. H. L., Sousa-Lima, R. S., Rodrigues, M., Young, R. J., & Farina, A. (2015). Determining temporal sampling schemes for passive acoustic studies in different tropical ecosystems. Tropical Conservation Science, 88, 215–234.CrossRefGoogle Scholar
  75. Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L., Napoletano, B. M., Gage, S. H., & Pierettie, N. (2011). Soundscape ecology: The science of sound in the landscape. Bioscience, 3, 203–216.CrossRefGoogle Scholar
  76. Preininger, D., Böckle, M., & Hödl, W. (2007). Comparison of anuran acoustic communities of two habitat typs in Danum Valley conservation area, Sabah, Malaysia. Salamdra, 43, 129–138.Google Scholar
  77. Qi, J., Gage, S. H., Joo, W., Napoletano, B., & Biswas, S. (2008). Soundscape characteristics of an environment: A new ecological indicator of ecosystem health. In W. Ji (Ed.), Wetland and water resource modeling and assessment (pp. 201–211). New York: CRC Press.Google Scholar
  78. Reijnen, R., Foppen, R., Braak, C. T., & Thissen, J. (1995). Impact of road traffic on breeding bird populations. In J. Davenport & J. L. Davenport (Eds.), The ecology of transportation: Managing mobility for the environment (pp. 255–274). Heidelberg: Springer-Verlag.Google Scholar
  79. Rheindt, F. E. (2003). The impact of roads on birds: Does song frequency play a role in determining susceptibility to noise pollution? Journal of Ornithology, 144, 295–306.CrossRefGoogle Scholar
  80. Richardson, W. J., Miller, G. W., & Greene, C. R. (1999). Displacement of migrating bowhead whales by sounds from seismic surveys in shallow waters of the Beaufort Sea. Journal of Acoustic Society of America, 106, 2281.CrossRefGoogle Scholar
  81. Ritts, M., Gage, S. H., Picard, C. R., Dundas, E., & Dundas, S. (2016). Collaborative research praxi to establish baseline ecoacoustics conditions in Gitga’at territory. Global Ecology and Conservation, 7, 25–38.CrossRefGoogle Scholar
  82. Rogers, P. H., Popper, A. N., Hastings, M. C., & Saidel, W. M. (1988). Processing of acoustic signals in the auditory system of bony fish. Journal of the Acoustical Society of America, 83, 338–349.CrossRefPubMedGoogle Scholar
  83. Ryan, M. J., & Brenowitz, E. A. (1985). The role of body size, phylogeny, and ambient noise in the evolution of bird song. American Naturalist, 126, 87–100.CrossRefGoogle Scholar
  84. Samarra, F. I. P., Klappert, K., Brumm, H., & Miller, P. J. O. (2009). Background noise constrains communication: Acoustic masking of courtship song in the fruit fly Drosophila montana. Behaviour, 146, 1635–1648.CrossRefGoogle Scholar
  85. Schafer, R. M. (1985). Acoustic space. In D. Seamon & R. Mugerauer (Eds.), Dwelling, place and environment: Towards a phenomenology of person and world (pp. 87–98). Netherlands: Springer.CrossRefGoogle Scholar
  86. Simpson, S. D., Jeffs, A., Montgomery, J. C., McCauley, R. D., & Meekan, M. G. (2008). Nocturnal relocation of adult and juvenile coral reef fishes in response to reef noise. Coral Reefs, 27, 97–104.CrossRefGoogle Scholar
  87. Simpson, S. D., Radford, A. N., Tickle, E. J., Meekan, M. G., & Jeffs, A. G. (2012). Adaptive avoidance of reef noise. PloS One, 6, e16625. doi: 10.1371/journal.pone.0016625.CrossRefGoogle Scholar
  88. Slabbekoorn, H., & Bouton, N. (2008). Soundscape orientation: A new field in need of sound investigation. Animal Behaviour, 76, e5–e8.CrossRefGoogle Scholar
  89. Slabbekoorn, H., & Peet, M. (2003). Birds sing at a higher pitch in urban noise. Nature, 424, 267.CrossRefPubMedGoogle Scholar
  90. Slabbekoorn, H., & Ripmeester, E. A. (2008). Birdsong and anthropogenic noise: Implications and applications for conservation. Molecular Ecology, 17, 72–83.CrossRefPubMedGoogle Scholar
  91. Spreng, M. (2000). Possible health effects of noise induced cortisol increase. Noise and Health, 2, 59–63.PubMedGoogle Scholar
  92. Stone, E. (2000). Separating noise from the noise: A finding in support of the niche hypothesis, that birds are influenced by human-induced noise in natural habitats. Anthrozoös, 13, 225–271.CrossRefGoogle Scholar
  93. Sueur, J., & Farina, A. (2015). Ecoacoustics: The ecological investigation and interpretation of environmental sound. Biosemiotics, 8, 493–502.CrossRefGoogle Scholar
  94. Tolimieri, N., Jeffs, A., & Montgomery, J. C. (2000). Ambient sound as a cue for navigation by the pelagic larvae of reef fishes. Marine Ecology Progress Series, 207, 219–224.CrossRefGoogle Scholar
  95. Valone, T. J., & Templeton, J. J. (2002). Public information for the assessment of quality: A widespread social phenomenon. Philosophical Transactions of the Royal Society B, 357, 1549–1557.CrossRefGoogle Scholar
  96. Vandermeer, J. H. (1972). Niche theory. Annual Review of Ecology and Systematics, 3, 107–1032.CrossRefGoogle Scholar
  97. Vargas-Salinas, F., & Amezquita, A. (2013). Stream noise, hybridization, and uncoupled evolution of call traits in two lineages of poison frogs: Oophaga histrionica And Oophaga lehmanni. PloS One, 8, e77545.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Vargas-Salinas, F., Dorado-Correa, A., & Amézquita, A. (2014). Microclimate and stream noise predict geographic divergence in the auditory signal of a threatened poison frog. Biotropica, 46, 748–755.CrossRefGoogle Scholar
  99. Ward, M. P., & Schlossberg, S. (2004). Conspecific attraction and the conversation of territorial songbirds. Conservation Biology, 18, 519–525.CrossRefGoogle Scholar
  100. Ward, P., & Zahavi, A. (1973). The importance of certain assemblages of birds as “information-centres” for food finding. Ibis, 115, 517–534.CrossRefGoogle Scholar
  101. Wood, W. E., & Yezerinac, S. M. (2006). Song sparrow (Melospizqa melodia) song varies with urban noise. The Auk, 123, 650–659.CrossRefGoogle Scholar

Copyright information

© US Government 2017

Authors and Affiliations

  • Timothy C. Mullet
    • 1
    Email author
  • Almo Farina
    • 2
  • Stuart H. Gage
    • 3
  1. 1.Ecological ServicesU.S. Fish and Wildlife ServiceDaphneUSA
  2. 2.Department of Pure and Applied SciencesUniversity of UrbinoUrbinoItaly
  3. 3.Department of Entomology, Global Observatory for Ecosystem ServicesMichigan State UniversityEast LansingUSA

Personalised recommendations