, Volume 9, Issue 3, pp 307–318 | Cite as

Multi-Level Semiosis: a Paradigm of Emergent Innovation

  • Luis Emilio BruniEmail author
  • Franco Giorgi


In this introductory article to the special issue on Multi-level semiosis we attempt to stage the background for qualifying the notion of “multi-levelness” when considering communication processes and semiosis in all life forms, i.e. from the cellular to the organismic level. While structures are organized hierarchically, communication processes require a kind of processual organization that may be better described as being heterarchical. Theoretically, the challenge arises in the temporal domain, that is, in the developmental and evolutionary dimension of dynamic semiotic processes. We discuss the importance of this fundamental difference in order to explain how levels, domains and orders of magnitude, on the one hand, and synchronic and diachronic processes, on the other, contribute to the overall organization of every living being. To account for such multi-level organization, semiotic freedom is assumed to be a scalar property that endows living systems at different levels and domains with the capacity to ponder selectively the overall structural coherence and functional compatibility of their heterarchical processing, which is increasingly less conditioned by the underlying molecular determinism.


Multi-level Semiosis Hierarchy Heterarchy Domain Biological processes Cognitive processes 


  1. Affifi R. (2016). The semiosis of "side effects" in genetic interventions. Biosemiotics. doi: 10.1007/s12304-016-9274-3.
  2. Auletta, G., Ellis, G. F. R., & Jaeger, L. (2008). Top-down causation by information control: from a philosophical problem to a scientific research programme. Journal Royal Society Interface, 5, 1159–1172.CrossRefGoogle Scholar
  3. Bechtel, W. (2006). Discovering cell mechanisms: The creation of modern cell biology. Cambridge: Cambridge University Press.Google Scholar
  4. Bijma, P., Muir, W. M., & Van Arendonk, J. A. M. (2007). Multi-level selection 1: quantitative genetics of inheritance and response to selection. Genetics, 175, 277–288.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brigandt, I. (2007). Typology now: homology and developmental constraints explain evolvability. Biology and Philosophy, 22, 709–725.CrossRefGoogle Scholar
  6. Bruni, L. E. (2007). Cellular semiotics and signal transduction. In M. Barbieri (Ed.), Introduction to biosemiotics: The new biological synthesis (pp. 365–408). Berlin: Springer.CrossRefGoogle Scholar
  7. Bruni, L. E. (2015). Heterarchical Semiosis: From signal transduction to narrative intelligibility. In P. P. Trifonas (Ed.), International handbook of semiotics (pp. 1079–1097). Dordrecht: Springer.CrossRefGoogle Scholar
  8. Bruni, L. E., & Giorgi, F. (2015). Towards a heterarchical approach to biology and cognition. Progress Biophysics Molecular Biology, 119(3), 481–92.CrossRefGoogle Scholar
  9. Byrne, J. H., Heidelberger, R., & Waxham, M. N. (2014). From molecules to network: An introduction to cellular and molecular neuroscience. Amsterdam: Elsevier.Google Scholar
  10. Clarke, E. (2013). The multiple realizability of biological individuals. Journal of Philosophy, 110(8), 413–435.CrossRefGoogle Scholar
  11. Clarke, E. (2016). A level-of-selection approach to evolutionary individuality. Biology and Philosophy, 31, 1–19. doi: 10.1007/s10539-016-9540-4.CrossRefGoogle Scholar
  12. Dbouk, H. A., Mroue, R. M., El-Sabban, M. E., & Talhouk, R. S. (2009). Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Communication and Signaling, 7, 4.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Defranco, B. H., Nickel, B. M., Baty, C. J., Martinez, J. S., Gay, V. L., Sandulache, V. C., Hackam, D. J., & Murray, S. A. (2008). Migrating cells retain gap junction plaque structure and function. Cell Communication & Adhesion, 15(3), 273–88.CrossRefGoogle Scholar
  14. Giorgi, F., & Auletta, G. (2016). Semiotic tools for multi-level cell communication. Biosemiotics. doi: 10.1007/s12304-016-9272-5.
  15. Günther, G. (1973). Life as poly-contextuality. Wirklichkeit und Reflexion, Festschrift für Walter Schulz, Pfullingen, pp. 187–210. accessed 23.10.16.
  16. Hanschen, E. R., Shelton, D. E., & Michod, R. E. (2015). Evolutionary transitions in individuality and recent models of multicellularity. In I. Ruiz-Trillo & A. M. Nedelcu (Eds.), Evolutionary transitions to multicellular life, advances in marine genomics 2 (pp. 165–188). Dordrecht: Springer Science.Google Scholar
  17. Havel, I. M. (2001). Causal domains and emergent rationality. In B. Brogaard and B. Smith (Eds.), Rationality and irrationality. (pp. 129–151) Proc. 23rd International Wittgenstein Symposium. Vienna: öbv & hpt.Google Scholar
  18. Heylighen, F. (1999). Evolutionary transitions: how do levels of complexity emerge? Complexity, 6(1), 53–57.CrossRefGoogle Scholar
  19. Hlavacek, W. S., Faeder, J. R., Blinov, M. L., Perelson, A. S., & Goldstein, G. (2003). The complexity of complexes in signal transduction. Biotechnology and Bioengineering, 84, 783–794.CrossRefPubMedGoogle Scholar
  20. Jablonka, E., & Lamb, M. J. (1998). Bridges between development and evolution. Biology and Philosophy, 13(1), 119–124.CrossRefGoogle Scholar
  21. Johnson, N. (2009). Two’s company, Three is complexity. New York: One world Publications.Google Scholar
  22. Jonas, H. (1984). The Imperative of responsibility: In search of an ethics for the technological age. Chicago: The University of Chicago Press.Google Scholar
  23. Kholodenko, B. N. (2006). Cell signalling dynamics in time and space. Nature Reviews of Molecular Cell Biology, 7(3), 165–176.CrossRefPubMedGoogle Scholar
  24. Klingenberg, C. P. (2005). Developmental constraints, modules, and evolvability. In B. Hallgrimsson & B. K. Hall (Eds.), Variation: A central concept in biology (pp. 219–247). Burlington: Elsevier Academic Press.CrossRefGoogle Scholar
  25. Kull, K. (2015). Semiosis stems from logical incompatibility in organic nature: why biophysics does not see meaning, while biosemiotics does. Progress in Biophysics and Molecular Biology, 119, 616–621.CrossRefPubMedGoogle Scholar
  26. Kilstrup M. (2016). The forbidden signs. Biosemiotics. doi: 10.1007/s12304-016-9277-0.
  27. Maliet, O., Shelton, D. E., & Michod, R. E. (2015). A model for the origin of group reproduction during the evolutionary transition to multicellularity. Biology Letters, 11, 2015.0157.CrossRefGoogle Scholar
  28. Maturana, F., & Varela, J. (1980). Boston studies in the philosophy of science. In R. S. Cohen & M. W. Wartofsky (Eds.), Autopoiesis and cognition: The realization of the living (Vol. 42, D). Dordecht: Reidel Publishing Co.CrossRefGoogle Scholar
  29. McCulloch, W. (1945). A heterarchy of values determined by the topology of nervous nets. Bulletin Mathematical Biophysics, 7, 89–93.CrossRefGoogle Scholar
  30. Ovádi, J., & Saks, V. (2004). On the origin of intracellular compartmentation and organized metabolic systems. Molecular and Cellular Biochemistry, 256, 5–12.CrossRefPubMedGoogle Scholar
  31. Skinner, A. M., O’Neill, S. L., & Kurre, P. (2009). Cellular microvesicle pathways can be targeted to transfer genetic information between non-immune cells. PLoS ONE, 4(7), e6219.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Švorcová J. (2016). Distributed heredity and development: a heterarchical perspective. Biosemiotics. doi: 10.1007/s12304-016-9276-1.
  33. Traulsen, A., & Nowak, M. A. (2005). Evolution of cooperation by multi-level selection. Proceedings of National Academy of Sciences USA, 103, 10952–10955.CrossRefGoogle Scholar
  34. von Goldammer, E., Joachim, P., Newbury, J. (2003). Heterarchy – hierarchy: Two complementary categories of description. Accessed 23.10.16.
  35. Wartlick, O., Kicheva, A., & González-Gaitán, M. (2009). Morphogen gradient formation. Cold Spring Harbor Perspectives in Biology, 1(3), a001255.CrossRefPubMedPubMedCentralGoogle Scholar
  36. West, S. A., Fisher, R. M., Gardner, A., & Kiers, E. T. (2015). Major evolutionary transitions in individuality. Proceedings of National Academy of Sciences, USA, 112, 10112–10119.CrossRefGoogle Scholar
  37. Wimsatt, W. C. (1994). The ontology of complex systems: levels of organization, perspectives, and causal thickets. Canadian Journal of Philosophy, 20, 207–274.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Aalborg UniversityCopenhagenDenmark
  2. 2.University of PisaPisaItaly

Personalised recommendations