, Volume 9, Issue 3, pp 451–466 | Cite as

From Peirce’s Semiotics to Information-Sign-Symbol

  • Gennaro AulettaEmail author


Peirce is the father of semiotics. However, his theory was developed long before the developments in information theory. The codification procedures studied by the latter turn out to be crucial also for biology. At the root of both information and semiosis there are equivalence classes. In the case of biological systems, we speak of functional equivalence classes. Equivalence classes represent the grid that organism impose on biochemical processes and signals of the external or internal environment. The whole feedback circuit that is built in this way allows information control. Symbolic systems represent another kind of dealing-with-information as far as they deal with the matching of our concepts with the world.


Code Alphabet Codeword Equivalence class Functional equivalence class Information control Meaning Second-level functions 


  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. D. (2008). The molecular biology of the cell (5th ed.). New York: Garland P.Google Scholar
  2. Auletta, G. (2002). Is representation characterized by Intrinsicity and causality? Intellectica, 35, 83–113.Google Scholar
  3. Auletta, G. (2011a). Cognitive biology: dealing with information from bacteria to minds. Oxford: Oxford University Press.CrossRefGoogle Scholar
  4. Auletta, G. (2011b). Teleonomy: the feedback circuit involving information and thermodynamic processes. Journal of Modern Physics, 2(3), 136–145.CrossRefGoogle Scholar
  5. Auletta, G, (2011c) In collaboration with I. Colagè, P. D’ambrosio, and L. Torcal Integrated cognitive strategies in a changing world, G and B Press, RomeGoogle Scholar
  6. Auletta, G. (2012). Causation upside down? Revista Portuguesa de Filosofia, 68(1–2), 9–32.CrossRefGoogle Scholar
  7. Auletta, G. (2013). Information and metabolism in bacterial chemotaxis. Entropy, 15, 311–326.CrossRefGoogle Scholar
  8. Auletta, G. (2016). Networks and causation top-down. Revista Portuguesa de Filosofia, 72, 171–180.CrossRefGoogle Scholar
  9. Auletta, G., & Jeannerod, M. (2013). Introduction: consciousness as a top-down causal agency. In G. Auletta, I. Colagè, & M. Jeannerod (Eds.), Brains top-down: is top-down causation challenging neuroscience? (pp. 1–49). Singapore: World Scientific.CrossRefGoogle Scholar
  10. Auletta, G., Ellis, G., & Jaeger, L. (2008). Top-down causation by information control: from a philosophical problem to a scientific research program. Journal of the Royal Society, Interface, 5, 1159–1172.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Barbieri, M. (2003). The organic codes: an introduction to semantic biology. Cambridge: University Press.Google Scholar
  12. Barbieri, M. (2015). Code biology a new science of life. Berlin: Springer.Google Scholar
  13. Bruni, L. E., & Giorgi, F. (2015). Towards a heterarchical approach to biology and cognition. Progress in Biophysics and Molecular Biology, 119, 481–492.CrossRefPubMedGoogle Scholar
  14. Chomsky, N. (2000). New horizons in the study of language and mind. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. Clark, A. (1997). Being there: putting brain, body, and world together again. Cambridge: MA, MIT Press.Google Scholar
  16. Conant, R. C., & Ashby, R. W. (1970). Every good regulator of a system must be a model of that system. International Journal of Systems Science, 1, 89–97.CrossRefGoogle Scholar
  17. Cosmides, L., & Tooby, J. (2002). Unraveling the enigma of human intelligence: evolutionary psychology and the Multimodular mind. In R. J. Sternberg & J. C. Kaufman (Eds.), The evolution of intelligence (pp. 145–198). London: Erlbaum.Google Scholar
  18. Cosmides, L., Barrett, H. C., & Tooby, J. (2010). Adaptive specialization, social exchange, and the evolution of human intelligence. Proceedings of the National Academy of Sciences, USA, vol, 107, 9007–9014.CrossRefGoogle Scholar
  19. Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: from action organization to intention understanding. Science, 308, 662–667.CrossRefPubMedGoogle Scholar
  20. Friston, K., & Kiebel, S. (2009). Predictive coding under the free–energy principle. Philosophical Transactions of the Royal Society, B364, 1211–1221.CrossRefGoogle Scholar
  21. Friston, K. J., Sengupta, B., & Auletta, G. (2014). Cognitive dynamics: from attractors to active inference. Proceedings of the IEEE, vol, 102, 427–445.CrossRefGoogle Scholar
  22. Gibson, J. J. (1979). The ecological approach to visual perception, Boston, Houghton Hutchins E (1995) cognition in the wild. Cambridge MA: MIT Press.Google Scholar
  23. Hauser, M. D. (2009). The possibility of impossible cultures. Nature, 460, 190–196.CrossRefPubMedGoogle Scholar
  24. Hutchins, E. (2008). The role of cultural practices in the emergence of modern human intelligence. Philosophical Transactions of the Royal Society, B363, 2011–2019.CrossRefGoogle Scholar
  25. Ling, S. & Xing, C. (2004). Coding Theory: A First Course. Cambridge, University Press.Google Scholar
  26. Marshall–Pescini, S., & Whiten, A. (2008). Chimpanzees (Pan troglodytes) and the question of cumulative culture: an experimental approach. Animal Cognition, 11, 449–456.CrossRefPubMedGoogle Scholar
  27. Maynard Smith J and Szathmáry E (1995) The Major Transitions in Evolution, Oxford, Freeman/Spektrum, 1995; Oxford, University Press, 1997.Google Scholar
  28. Nielsen, M. A., & Chuang, I. L. (2000). Quantum computation and quantum information. Cambridge: Cambridge University Press.Google Scholar
  29. Peirce, CS (1903) The Nature of Meaning. In Peirce (EP), II, 208–225Google Scholar
  30. Peirce, CS (1907) Pragmatism. In Peirce (EP), II, 398–433Google Scholar
  31. Peirce, CS (1958) The Collected Papers, vols. I-VI (eds. Hartshorne C and Weiss P), Harvard University Press, Cambridge, MA, 1931–1935; vols. VII-VIII (ed. Burks AW), Harvard University Press, Cambridge, MA.Google Scholar
  32. Peirce, CS (1998). The Essential Peirce, Bloomington: Indiana University Press, vol. s I–II.Google Scholar
  33. Ramon Fuentes M (2012) The Concept of Function in Molecular Biology: A Theoretical Framework and a Case Study. Dissertation, Pontifical Gregorian University (discussed May 2012)Google Scholar
  34. Rizzolatti, G., Gentilucci, M., Camarda R. M., Callese, V., Luppino, G., Matelli, M., & Fogassi, L. (1990). Neurons related to reaching–grasping arm movements in the rostral part of area 6 (Area 6aβ)”, Experimental Brain Research 82, 337–50.Google Scholar
  35. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(379–423), 623–656.CrossRefGoogle Scholar
  36. Uhlen, M., & Ponten, F. (2005). Antibody–based proteomics for human tissue profiling. Molecular and Cellular Proteomics, 4(4), 384–393.CrossRefPubMedGoogle Scholar
  37. von Helmholtz, H. L. F. (1896). Handbuch der physiologischen Optik (2nd ed.). Hamburg/Leipzig: L. Voss.Google Scholar
  38. Von Uexküll, J. (1926). Theoretical biology. New York: Harcourt, Brace and Company.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Pontifical Gregorian UniversityRomeItaly
  2. 2.University of CassinoCassinoItaly

Personalised recommendations