Advertisement

Biosemiotics

, Volume 9, Issue 3, pp 399–416 | Cite as

Evolutionary Biosemiotics and Multilevel Construction Networks

  • Alexei A. SharovEmail author
Article

Abstract

In contrast to the traditional relational semiotics, biosemiotics decisively deviates towards dynamical aspects of signs at the evolutionary and developmental time scales. The analysis of sign dynamics requires constructivism (in a broad sense) to explain how new components such as subagents, sensors, effectors, and interpretation networks are produced by developing and evolving organisms. Semiotic networks that include signs, tools, and subagents are multilevel, and this feature supports the plasticity, robustness, and evolvability of organisms. The origin of life is described here as the emergence of simple self-constructing semiotic networks that progressively increased the diversity of their components and relations. Primitive organisms have no capacity to classify and track objects; thus, we need to admit the existence of proto-signs that directly regulate activities of agents without being associated with objects. However, object recognition and handling became possible in eukaryotic species with the development of extensive rewritable epigenetic memory as well as sensorial and effector capacities. Semiotic networks are based on sequential and recursive construction, where each step produces components (i.e., agents, scaffolds, signs, and resources) that are needed for the following steps of construction. Construction is not limited to repair and reproduction of what already exists or is unambiguously encoded, it also includes production of new components and behaviors via learning and evolution. A special case is the emergence of new levels of organization known as metasystem transition. Multilevel semiotic networks reshape the phenotype of organisms by combining a mosaic of features developed via learning and evolution of cooperating and/or conflicting subagents.

Keywords

Evolutionary semiotics Constructivism Semiotic network Evolvability Metasystem transition Constraints on learning 

Notes

Acknowledgments

This paper was supported entirely by the Intramural Research Program of the National Institute on Aging (NIA/NIH), project Z01 AG000656-13. The content of the paper is not endorsed by the funding organization.

References

  1. Anderson, M., Deely, J., Krampen, M., Ransdell, J., Sebeok, T. A., & Uexküll, T. v. (1984). A semiotic perspective on the sciences: steps toward a new paradigm. Semiotica, 52(1/2), 7–47.Google Scholar
  2. Armus, H. L., Montgomery, A. R., & Gurney, R. L. (2006). Discrimination learning and extinction in paramecia (P. caudatum). Psychological Reports, 98(3), 705–711.CrossRefPubMedGoogle Scholar
  3. Baldwin, M. J. (1896). A new factor in evolution. American Naturalist, 30, 441–451.CrossRefGoogle Scholar
  4. Barbieri, M. (2003). The organic codes: An introduction to semantic biology. Cambridge: Cambridge University Press.Google Scholar
  5. Barbieri, M. (2008). Biosemiotics: a new understanding of life. Die Naturwissenschaften, 95(7), 577–599.CrossRefPubMedGoogle Scholar
  6. Berthoz, A. (2012). Simplexity: Simplifying priciples for a complex world (G. Weiss, Trans.). New Haven: Yale University Press.CrossRefGoogle Scholar
  7. Bickhard, M. H. (2005). Functional scaffolding and self-scaffolding. New Ideas in Psychology, 23, 166–173.CrossRefGoogle Scholar
  8. Biver, N., Bockelée-Morvan, D., Moreno, R., Crovisier, J., Colom, P., Lis, D. C., et al. (2015). Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy). Science Advances, 1(9), e1500863.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bright, M., & Bulgheresi, S. (2010). A complex journey: transmission of microbial symbionts. Nature Reviews Microbiology, 8(3), 218–230.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bruni, L. E. (2008). Cellular semiotics and signal transduction. In M. Barbieri (Ed.), Introduction to biosemiotics. The new biological synthesis (pp. 365–407). Dordrecht: Springer.Google Scholar
  11. Cariani, P. (1998). Towards an evolutionary semiotics: The emergence of new sign-functions in organisms and devices. In S. S. G. Van de Vijver & M. Delpos (Eds.), Evolutionary systems (pp. 359–377). Dordrecht: Kluwer.CrossRefGoogle Scholar
  12. Compain, P. (2003). Le pari de la simplexité. Le simple et le complexe en synthèse organique. L’Actualité Chimique(4-5), 129–134.Google Scholar
  13. Core, A., Runckel, C., Ivers, J., Quock, C., Siapno, T., Denault, S., et al. (2012). A new threat to honey bees, the parasitic phorid fly Apocephalus borealis. PLoS One, 7(1), e29639.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Corthay, A. (2014). Does the immune system naturally protect against cancer? Frontiers in Immunology, 5, 197.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.Google Scholar
  16. Deely, J. (1992). Semiotics and biosemiotics: Are sign-science and life-science coextensive? In T. A. Sebeok & J. Umiker-Sebeok (Eds.), Biosemiotics. The semiotic web 1991 (pp. 45–75). New York: Mouton de Gruyter.Google Scholar
  17. Dewey, J. (1998). The development of American pragmatism. In T. M. A. L. A. Hickman (Ed.), The essential Dewey (vol. 1). Bloomengton: Indiana Univ. Press.Google Scholar
  18. Gardner, M. (1970). Mathematical games – the fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223, 120–123.CrossRefGoogle Scholar
  19. Gilbert, W. (1986). Origin of life: the RNA world. Nature, 319(6055), 618.CrossRefGoogle Scholar
  20. Ginsburg, S., & Jablonka, E. (2009). Epigenetic learning in non-neural organisms. Journal of Biosciences, 34(4), 633–646.CrossRefPubMedGoogle Scholar
  21. Hennessey, T. (1979). Classical conditioning in paramecia. Animal Learning & Behavior, 7, 419–423.CrossRefGoogle Scholar
  22. Hoffmeyer, J. (1996). Signs of meaning in the universe. Bloomington: IndianaUniversity Press.Google Scholar
  23. Hoffmeyer, J. (2008). Biosemiotics: An examination into the signs of life and the life of signs Scranton. PA: University of Scranton Press.Google Scholar
  24. Hoffmeyer, J. (2010). Semiotics of nature. In P. Cobley (Ed.), The Routledge companion to semiotics (pp. 29–42). London: Routledge.Google Scholar
  25. Hoffmeyer, J., & Emmeche, C. (1991). Code-duality and the semiotics of nature. In M. Anderson & F. Merrell (Eds.), On semiotic modeling (pp. 117–166). Berlin: Mouton de Gruyter.Google Scholar
  26. Hoffmeyer, J., & Stjernfelt, F. (2016). The great chain of semiosis. investigating the steps in the evolution of semiotic competence,” Jesper Hoffmeyer and Frederik Stjernfelt. Biosemiotics, 9(1). doi:  10.1007/s12304-015-9247-y.
  27. Ingram, W. M., Goodrich, L. M., Robey, E. A., & Eisen, M. B. (2013). Mice infected with low-virulence strains of Toxoplasma gondii lose their innate aversion to cat urine, even after extensive parasite clearance. PLoS One, 8(9), e75246.CrossRefPubMedPubMedCentralGoogle Scholar
  28. James, W. (1954). Essays in pragmatism. New York: Hafner Pub. Co.Google Scholar
  29. Kauffman, S. A. (1986). Autocatalytic sets of proteins. Journal of Theoretical Biology, 119(1), 1–24.CrossRefPubMedGoogle Scholar
  30. Kauffman, S. A. (2014). Prolegomenon to patterns in evolution. Biosystems, 123, 3–8.CrossRefPubMedGoogle Scholar
  31. Klir, G. J. (1991). Facets of systems science (Vol. 7, IFSR International Series on Systems Science and Engineering). New York, London: Springer.Google Scholar
  32. Koonin, E. V., & Galperin, M. Y. (2003). Sequence - evolution - function: Computational approaches in comparative genomics. Boston: Kluwer Academic.CrossRefGoogle Scholar
  33. Kull, K. (2009). Vegetative, animal, and cultural semiosis: the semiotic threshold zones. Cognitive Semiotics, 4, 8–27.CrossRefGoogle Scholar
  34. Langton, C. G. (1984). Self-reproduction in cellular automata. Physica D, 10, 135–144.CrossRefGoogle Scholar
  35. Liu, C. H., & Matthews. (2005). Vygotsky’s philosophy: constructivism and its criticisms examined. International Education Journal, 6(3), 386–399.Google Scholar
  36. Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., & Darnell, J. (2000). Molecular cell biology (4th ed.). New York: W. H. Freeman and Co.Google Scholar
  37. Maturana, H., & Varela, F. (1980). Autopoiesis and cognition: The realization of the living (Vol. 42, Boston Studies in the Philosophy of Science). Dordecht: D. Reidel Publishing Co.CrossRefGoogle Scholar
  38. Minsky, M. (1986). The society of mind. New York: Simon and Schuster.Google Scholar
  39. Morris, C. W. (1964). Signification and significance: A study of the relations of signs and values. Cambridge: MIT Press.Google Scholar
  40. Murchison, E. P., Wedge, D. C., Alexandrov, L. B., Fu, B., Martincorena, I., Ning, Z., et al. (2014). Transmissible dog cancer genome reveals the origin and history of an ancient cell lineage. Science, 343(6169), 437–440.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Noss, R., & Clayson, J. (2015). Reconstructing constructionism. Constructivist Foundations, 10(3), 285–288.Google Scholar
  42. Peirce, C. S. (1976). The new elements of mathematics. Atlantic Highlands: Humanities Press.Google Scholar
  43. Pershin, Y. V., La Fontaine, S., & Di Ventra, M. (2009). Memristive model of amoeba learning. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 80(2 Pt 1), 021926.CrossRefPubMedGoogle Scholar
  44. Piaget, J., & Garcia, R. (1989). Psychogenesis and the history of science. New York: Columbia University Press.Google Scholar
  45. Prodi, G. (1988). Material bases of signification. Semiotica, 69(3/4), 191–241.Google Scholar
  46. Puigbo, P., Wolf, Y. I., & Koonin, E. V. (2013). Seeing the tree of life behind the phylogenetic forest. BMC Biology, 11, 46.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Riegler, A. (2006). Like cats and dogs: Radical constructivism and evolutionary epistemology. In J. P. V. B. N. Gontier & D. Aerts (Eds.), Evolutionary epistemology, language and culture (pp. 47–65). Dordrecht: Springer.CrossRefGoogle Scholar
  48. Rosen, R. (1991). Life itself: a comprehensive inquiry into the nature, origin, and fabrication of life. New York: Columbia University Press.Google Scholar
  49. Saigusa, T., Tero, A., Nakagaki, T., & Kuramoto, Y. (2008). Amoebae anticipate periodic events. Physical Reviews Letters, 100(1), 018101.CrossRefGoogle Scholar
  50. Schlosser, G., & Wagner, G. P. (2004). Introduction: The modularity concept in developmental and evolutionary biology. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 1–11). Chicago: University of Chicago Press.Google Scholar
  51. Schrödinger, E. (1940). What is life? The physical aspect of the living cell. Cambridge: Cambridge University Press.Google Scholar
  52. Sharov, A. A. (1992). Biosemiotics: functional-evolutionary approach to the problem of the sense of information. In T. A. Sebeok & J. Umiker-Sebeok (Eds.), Biosemiotics. The semiotic web 1991 (pp. 345–373). New York: Mouton de Gruyter.Google Scholar
  53. Sharov, A. A. (2001). Umwelt theory and pragmatism. Semiotica, 134, 211–228.Google Scholar
  54. Sharov, A. A. (2009). Coenzyme autocatalytic network on the surface of oil microspheres as a model for the origin of life. [Article]. International Journal of Molecular Sciences, 10(4), 1838–1852.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sharov, A. A. (2010). Functional information: Towards synthesis of biosemiotics and cybernetics. Entropy, 12(5), 1050–1070.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sharov, A. A. (2013). Minimal mind. In L. Swan (Ed.), Origins of mind (pp. 343–360). Dordrecht: Springer.CrossRefGoogle Scholar
  57. Sharov, A. A. (2014). Evolutionary constraints or opportunities? Biosystems, 123, 9–18.CrossRefPubMedGoogle Scholar
  58. Sharov, A. A. (2016a). Coenzyme world model of the origin of life. Biosystems, 144, 8–17.CrossRefPubMedGoogle Scholar
  59. Sharov, A. A. (2016b). Evolution of natural agents: preservation, advance, and emergence of functional information. Biosemiotics, 8. doi:  10.1007/s12304-015-9250-3.
  60. Sharov, A. A., & Gordon, R. (2013). Life before earth. http://arxiv.org/ftp/arxiv/papers/1304/1304.3381.pdf2013.
  61. Sharov, A. A., & Vehkavaara, T. (2015). Protosemiosis: agency with reduced representation capacity. Biosemiotics, 8(1), 103–123.CrossRefPubMedGoogle Scholar
  62. Tobias, S., & Duffy, T. M. (2009). Constructivist instruction: Success or failure? New York: Taylor & Francis.Google Scholar
  63. True, J. R. (2003). Insect melanism: the molecules matter. Trends in Ecology and Evolution, 18(12), 640–647.CrossRefGoogle Scholar
  64. Turchin, V. F. (1977). The phenomenon of science. New York: Columbia University Press.Google Scholar
  65. Uexküll, J. v. (1982). The theory of meaning. Semiotica, 42(1), 25–82.Google Scholar
  66. van’t Hof, A. E., & Saccheri, I. J. (2010). Industrial melanism in the peppered moth is not associated with genetic variation in canonical melanisation gene candidates. PLoS One, 5(5), e10889.CrossRefGoogle Scholar
  67. Villareal, L. P. (2009). Origin of group identity. Viruses, addiction and cooperation. New York: Springer.Google Scholar
  68. von Neumann, J. (1966). Theory of self-reproducing automata. Urbana: University of Illinois Press.Google Scholar
  69. Wächtershäuser, G. (1988). Before enzymes and templates: theory of surface metabolism. Microbiological Reviews, 52(4), 452–484.PubMedPubMedCentralGoogle Scholar
  70. Waddington, C. H. (1968). Towards a theoretical biology. Nature, 218(5141), 525–527.CrossRefPubMedGoogle Scholar
  71. Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist, 36, 36–43.CrossRefGoogle Scholar
  72. Wittkopp, P. J., True, J. R., & Carroll, S. B. (2002). Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development, 129(8), 1849–1858.PubMedGoogle Scholar
  73. Yamasaki, S., Stoecklin, G., Kedersha, N., Simarro, M., & Anderson, P. (2007). T-cell intracellular antigen-1 (TIA-1)-induced translational silencing promotes the decay of selected mRNAs. Journal of Biological Chemistry, 282(41), 30070–30077.CrossRefPubMedGoogle Scholar

Copyright information

© US Government 2016

Authors and Affiliations

  1. 1.National Institute on Aging, Laboratory of GeneticsBaltimoreUSA

Personalised recommendations