Skip to main content

The Application of the Acoustic Complexity Indices (ACI) to Ecoacoustic Event Detection and Identification (EEDI) Modeling

Abstract

In programs of acoustic survey, the amount of data collected and the lack of automatic routines for their classification and interpretation can represent a serious obstacle to achieving quick results. To overcome these obstacles, we are proposing an ecosemiotic model of data mining, ecoacoustic event detection and identification (EEDI), that uses a combination of the acoustic complexity indices (ACItf, ACIft, and ACIfte) and automatically extracts the ecoacoustic events of interest from the sound files. These events may be indicators of environmental functioning at the scale of individual vocal species (e.g., behavior, phenology, and dynamics), the acoustic community (e.g., dawn and dusk chorus), the sound marks (e.g., the flag species of a community), or the soundscape (e.g., sonotope types). The EEDI model is represented by three procedural steps: 1) selecting acoustic data according to environmental variables, 2) detecting the events by creating an ecoacoustic event space (EES) produced by plotting ACIft and its evenness (ACIfte), 3) identifying events according to the level of correlation between the acoustic signature (ACItf) of the detected events and an ad hoc library of previously identified events. The EEDI procedure can be extensively used in basic and applied research. In particular, EEDI may be used in long-term monitoring programs to assess the effect of climate change on individual vocal species behavior (fishes, frogs, birds, mammals, and arthropods), population, and acoustic community dynamics. The EEDI model can be also used to investigate acoustic human intrusion in natural systems and the effect in urban areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alatalo, R. V. (1981). Problems in the measurement of evenness in ecology. Oikos, 37, 199–204.

    Article  Google Scholar 

  2. Bardeli, R., Wolff, D., Kurth, F., Koch, M., & Frommolt, K. H. (2010). Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring. Pattern Recognition Letters, 31, 1524–1534.

    Article  Google Scholar 

  3. Bobryk, W. C., Rega, C. C., Bardhan, S., Farina, A., He, H. S., & Jose, S. (2015). Utility of soundscape assessment for understanding conservation benefits of temperate agroforestry systems. Agroforestry Systems. doi:10.1007/s10457-015-9879-6.

    Google Scholar 

  4. Bormpoudakis, D., Sueur, J., & Pantis, J. (2013). Spatial heterogeneity of ambient sound at the habitat type level: ecological implications and applications. Landscape Ecology, 28, 495–506.

    Article  Google Scholar 

  5. Brandes, T. S. (2008). Automated sound recording and analysis techniques for bird surveys and conservation. Bird Conservation International, 18, S163–S173.

    Google Scholar 

  6. Bulla, L. (1994). An index of evenness and its associated diversity measure. Oikos, 70, 167–171.

    Article  Google Scholar 

  7. Depraetere, M., Pavoine, S., Jiguet, F., Gasc, A., Duvail, S., & Sueur, J. (2012). Monitoring animal diversity using acoustic indices: implementation in a temperate woodland. Ecological Indicators, 13, 46–54.

    Article  Google Scholar 

  8. Duarte, M. H. L., Sousa-Lima, R. S., Young, R. J., Farina, A., Vasconcelos, M., Rodrigues, M., & Pieretti, N. (2015). The impact of noise from open-cast mining on Atlantic forest biophony. Biological Conservation, 191, 623–631.

    Article  Google Scholar 

  9. Farina, A. (2008). Ecology, cognition and landscape. Linking natural and social systems. Dordrecht, NL: Springer.

    Google Scholar 

  10. Farina, A. (2010). Ecology, cognition and landscape. Dordrecht, NL: Springer.

    Google Scholar 

  11. Farina, A. (2014). Soundscape ecology: principles, patterns, methods and applications. NL: Springer Dordrecht.

    Book  Google Scholar 

  12. Farina, A. (2015). Animals in a noisy world. In R. Tønnessen & A. Oma (Eds.), Thinking about animals in the age of anthropocene (pp. 37–52). Rowan & Littlefield: Lexington Books, Lenham, MD, US.

    Google Scholar 

  13. Farina, A., & Belgrano, A. (2004). The eco-field: a new paradigm for landscape ecology. Ecological Research, 19(1), 107–110.

    Article  Google Scholar 

  14. Farina, A., & Belgrano, A. (2006). The eco-field hypothesis: toward a cognitive landscape. Landscape Ecology, 21(1), 5–17.

    Article  Google Scholar 

  15. Farina, A., & James, P. (2016). Acoustic community structure and dynamics: a fundamental component of acoustics. Biosystems. doi:10.1016/j.biosystems.2016.05.011.

  16. Farina, A., & Morri, D. (2008). Source-sink e eco-field: ipotesi ed evidenze sperimentali. Atti del X congresso nazionale della SIEP-IALE. Ecologia e governance del paesaggio: esperienze e prospettive. Bari, 365–372.

  17. Farina, A., & Salutari, P. (2016). Applying the ecoacoustic event detection and identification (EEDI) model to the analysis of acoustic complexity. Journal of Mediterranean Ecology, 14, 13–42.

    Google Scholar 

  18. Farina, A., Pieretti, N., & Piccioli, L. (2011). The soundscape methodology for long-term bird monitoring: a Mediterranean Europe case-study. Ecological Informatics, 6, 354–363.

    Article  Google Scholar 

  19. Farina, A., Lattanzi, E., Piccioli, L., Pieretti, N. (2012). The SoundscapeMeter. http://www.disbef.uniurb.it/biomia/soundscapemeter.

  20. Farina, A., Pieretti, N., & Morganti, N. (2013). Acoustic patterns of an invasive species: the red-billed Leiothrix (Leiothrix lutea Scopoli 1786) in a Mediterranean shrubland. Bioacoustics, 22(3), 175–194.

    Article  Google Scholar 

  21. Farina, A., James, P., Bobryk, C., Pieretti, N., Lattanzi, E., & McWilliam, J. (2014). Low cost (audio) recording (LCR) for advancing soundscape ecology towards the conservation of sonic complexity and biodiversity in natural and urban landscapes. Urban Ecosystems, 17, 923–944.

    Article  Google Scholar 

  22. Fuller, S., Axel, A. C., Tucker, D., & Gage, S. H. (2015). Connecting soundscape to landscape: which acoustic index best describe landscape configuration? Ecological Indicators, 58, 207–215.

    Article  Google Scholar 

  23. Gage, S. H., & Axel, A. C. (2014). Visualization of temporal change in soundscape power of a Michigan lake habitat over a 4-year period. Ecological Informatics, 21, 100–109.

    Article  Google Scholar 

  24. Gage, S. H., Napoletano, B. M., & Cooper, M. C. (2001). Assessment of ecosystem biodiversity by acoustic diversity indices. The Journal of the Acoustical Society of America, 109, 2430.

    Article  Google Scholar 

  25. Gasc, A., Sueur, J., Jiguet, F., Devictor, V., Grandcolas, P., Burrow, C., et al. (2013). Assessing biodiversity with sound: do acoustic diversity indices reflect phylogenetic and functional diversities of bird communities? Ecological Indicators, 25, 279–287.

  26. Gillooly, J.F., Ophir, A.G., (2010). The energetic basis of acoustic communication. Proceedings of the Royal Society, B, 277, 1325–1331.

  27. Harris, S., Shears N. T., & Radford, C. A. (2016). Ecoacoustic indices as proxies for biodiversity on temperate reefs. Methods in Ecology and Evolution. doi:10.1111/2041-210X.12527

  28. Heip, C. (1974). A new index measuring evenness. Journal of the Marine Biological Association of the UK, 54, 555–557.

    Article  Google Scholar 

  29. Heittola, T., Mesaros, A., Virtanen, T., Eronen, A. (2011). Sound event detection and context recognition. CHiME 2011 Workshop on Machine Listening in Multisource Environments.

  30. Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54(2), 427–432.

    Article  Google Scholar 

  31. Hill, M. O. (1997). An evenness statistics based on the abundance-weighted variance of species proportions. Oikos, 79, 413–416.

    Article  Google Scholar 

  32. Hurlbert, S. H. (1978). The measurement of niche overlap and some relatives. Ecology, 59(1), 66–77.

    Article  Google Scholar 

  33. Jancke, L., Kuhnis, J., Rogenmoser, L., Elmer, S. (2015). Time course of EEG oscillations during repeated listening of a well-known aria. Frontiers in Human Neuroscience, 9. doi:10.3389/fnhum.2015.00401.

  34. Joo, W., Gage, S. H., & Kasten, E. P. (2011). Analysis and interpretation of variability in soundscapes along an urban–rural gradient. Landscape and Urban Planning, 103, 259–276.

    Article  Google Scholar 

  35. Kaplan, M. B., Mooney, T. A., Partan, J., & Solow, A. R. (2015). Coral reef species assemblages are associated with ambient soundscape. Marine Ecology Progress Series, 533, 93–107.

    Article  Google Scholar 

  36. Krause, B., & Farina, A. (2016). Using ecoacoustic methods to survey the impacts of climate change on biodiversity. Biological Conservation, 195, 245–253.

    Article  Google Scholar 

  37. Levins, R. (1968). Evolution in changing environments. Some theoretical explorations: Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  38. Lloyd, M., & Ghelardi, R. J. (1964). A table for calculating the “equitability” component of species diversity. Journal of Animal Ecology, 33, 217–225.

    Article  Google Scholar 

  39. Llusia, D., Marquez, R., Beltran, J. F., Benitez, M., & Do Amara, J. (2013). Calling behaviour under climatic change: geographical and seasonal variation of calling temperatures in ectotherms. Global Change Biology, 19, 2655–2674.

    Article  PubMed  Google Scholar 

  40. Lozano, A., Farina, A., & Márquez, R. (2014). ACI (acoustic complexity index): Nueva herramienta Para el estudio del canto de anuros ACI (acoustic complexity index): a new tool to study anuran calls. Quehacer Científico en Chiapas, 9(2), 2014.

    Google Scholar 

  41. Ma, L., Milner, B., & Smith, D. (2006). Acoustic environment classification. ACM Trans. Speech Language Processing, 3(2), 1–22.

    Article  Google Scholar 

  42. Maran, T., & Kull, K. (2014). Ecosemiotics: main principles and current developments. Geografiska Annaler: Series B, Human Geography, 96, 41–50.

    Article  Google Scholar 

  43. McWilliam, J. N., & Hawkins, A. D. (2013). A comparison of inshore marine soundscapes. Journal of Experimental Marine Biology and Ecology, 446, 166–176.

    Article  Google Scholar 

  44. Mesaros, A., Heittola, T., Eronen, A., Virtanen, T. (2010). Acoustic event detection in real-life recordings. 18th European Signal Processing Conference (EUSIPCO 2010), Aalborg, Denmark, Aug. 2010, pp. 1267–1271.

  45. Molinari, J. (1989). A calibrated index for the measurement of evenness. Oikos, 56, 319–326.

    Article  Google Scholar 

  46. Monacchi, D. (2014). Fragments of extinction. In Leonardo Music Journal, 23. Cambridge, MA: MIT Press.

  47. Morri, D. (2008). Ecosemiotica e paesaggi sonori: nuove teorie e metodologie per lecologia. Unpl. PhD thesis, Università degli Studi di Urbino “Carlo Bo”.

  48. O’Neill, R. V., DeAngelis, L., Waide, J. B., & Allen, T. F. H. (1986). A hierarchical concept of ecosystems. Princeton, NJ, US: Princeton University Press.

    Google Scholar 

  49. Orloci, L. (1967). An agglomerative method for classification of plant communities. Journal of Ecology, 55, 193–205.

    Article  Google Scholar 

  50. Peet, R. K. (1974). The measurements of species diversity. Annual Review of Ecology, Evolution, and Systematics, 5, 285–307.

    Article  Google Scholar 

  51. Pieretti, N., & Farina, A. (2013). Application of a recently introduced index for acoustic complexity to an avian soundscape with traffic noise. The Journal of the Acoustical Society of America, 134(1), 891–900.

    Article  PubMed  Google Scholar 

  52. Pieretti, N., Farina, A., & Morri, D. (2011). A new methodology to infer the singing activity of an avian community: the acoustic complexity index (ACI). Ecological Indicators, 11, 868–873.

    Article  Google Scholar 

  53. Pieretti, N., Duarte, M. H. L., Sousa-Lima, R. S., Rodrigues, M., Young, R. J., & Farina, A. (2015). Determining temporal sampling schemes for passive acoustic studies in different tropical ecosystems. Tropical Conservation Science, 8, 215–234.

    Google Scholar 

  54. Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farin, A., Krause, B. L., Napoletano, B. M., et al. (2011). Soundscape ecology: the science of sound in the landscape. Bioscience, 61, 203–216.

  55. Sjolander, K., & Beskow, J. (2000). WaveSurferAn open source speech tool. Proceedings of the ICSLP, 2000(4), 464–467.

    Google Scholar 

  56. Staaterman, E., Rice, A. N., Mann, D. A., & Paris, C. B. (2013). Soundscapes from a tropical eastern Pacific reef and a Caribbean Sea reef. Coral Reefs, 32, 553–557.

    Article  Google Scholar 

  57. Sueur, J., & Farina, A. (2015). Acoustics: the ecological investigation and interpretation of environmental sound. Biosemiotics, 8, 493–502. doi:10.1007/s12304-015-9248-x.

    Article  Google Scholar 

  58. Sueur, J., Pavoine, S., Hamerlynck, O., & Duvail, S. (2008a). Rapid acoustic survey for biodiversity appraisal. PLoS ONE, 3, 1–9.

    Article  Google Scholar 

  59. Sueur, J., Aubin, T., & Simonis, C. (2008b). Seewave: a free modular tool for sound analysis and synthesis. Bioacoustics, 18, 213–226.

    Article  Google Scholar 

  60. Sueur, J., Farina, A., Gasc, A., Pieretti, N., & Pavoine, S. (2014). Acoustic indices for biodiversity assessment and landscape investigation. Acta Acustica united with Acustica, 100, 772–781.

    Article  Google Scholar 

  61. Towsey, M., Wimmer, J., Williamson, I., & Roe, P. (2014). The use of acoustic indices to determine avian species richness in audio-recordings of the environment. Ecological Informatics, 21, 110–119.

    Article  Google Scholar 

  62. Tucker, D., Gag, S., Williamson, I., & Fuller, S. (2014). Linking ecological condition and the soundscape in fragmented Australian forests. Landscape Ecology, 29, 745–758.

    Article  Google Scholar 

  63. von Uexküll, J. (1982). The theory of meaning. Semiotica, 42(1), 25–82.

    Google Scholar 

  64. Whittaker, R. H. (1952). A study of the summer foliage insect communities in the great Smoky Mountains. Ecological Monographs, 22, 1–44.

    Article  Google Scholar 

  65. Whittaker, R. H. (1975). Communities and ecosystems (Second ed.). Inc. New York: MacMillan Publishing Co..

    Google Scholar 

  66. Winner, J., Towsey, M., Roe, P., & Williamson, I. (2013). Sampling environmental acoustic recordings to determine bird species richness. Ecological Applications, 23(6), 1419–1428.

    Article  Google Scholar 

  67. Zhuang, X., Zhiu, X., Hasegawa-Johnson, M. A., & Huang, T. S. (2010). Real-world acoustic event detection. Pattern Recognition Letters, 31, 1543–1551.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Farina.

Electronic supplementary material

ESM 1

(DOCX 50077 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farina, A., Pieretti, N., Salutari, P. et al. The Application of the Acoustic Complexity Indices (ACI) to Ecoacoustic Event Detection and Identification (EEDI) Modeling. Biosemiotics 9, 227–246 (2016). https://doi.org/10.1007/s12304-016-9266-3

Download citation

Keywords

  • Acoustic complexity index
  • Ecoacoustic events
  • Biosemiotics
  • Data mining
  • Acoustics soundscape explorer